
M2MSOFT - 14 Rue de l’Europe, Parc d’Activités du Terlon, 31850 Montrabé. France

Phone: +33 820 200 263 – Fax: +33 561 50 02 32 – Email: contact@m2msoft.com - http://www.m2msoft.com

S5000

Voice and Video
Softswitch & IPBX

Reference manual

Reference: s5000_US_RefManual
Version: 2.0-ed1
Date: June 17th 2013

The latest update of this manual is available at: http://www.m2msoft.com

© 2003, 2013 by M2MSOFT, All rights reserved. No part of this manual may be used or reproduced in
any form or by any means, or stored in a database or retrieval system without prior written permission
of M2MSOFT. Specifications subject to change without notice.

mailto:contact@m2msoft.com
http://www.m2msoft.com/
http://www.m2msoft.com/index.php?lang=en§ion=18&cible=1

2 – S5000 Reference manual – 2.0-ed1

1. Content

1. CONTENT ... 2

2. INTRODUCTION ... 6

3. M2M-S5000 CONCEPT ... 7

3.1. THE GIMS FRAMEWORK... 7
3.2. S5000 FEATURES .. 9
3.3. S5000 LAYERS .. 11

4. INSTALLATION .. 12

4.1. PREREQUISITES FOR S5000 EXECUTION .. 12
4.1.1. Hardware requirements .. 12
4.1.2. Operating System requirements .. 12
4.1.3. Additional software components requirements ... 13

4.2. THE S5000 DELIVERY PACKAGE ... 13
4.3. INSTALLATION .. 14

4.3.1. Start from CDROM installer ... 14
4.3.2. Start from file installer .. 14
4.3.3. Graphical installation ... 15
4.3.4. Manual installation ... 16

4.4. LICENSE SETTINGS .. 18
4.4.1. License general parameters .. 19
4.4.2. Dongle settings .. 19
4.4.3. License file .. 19
4.4.4. License given from license server ... 20

4.5. INSTALLATION CHECKING ... 21
4.6. CONTROLCENTER ... 22

5. CONFIGURATION AND ADMINISTRATION ... 26

5.1. LOGIN PAGE ... 26
5.2. HOME PAGE AND PERSISTENT BUTTONS ... 27
5.3. GENERAL PARAMETERS PAGE ... 28

5.3.1. General .. 29
5.3.2. SIP ... 31
5.3.3. H.323 ... 33
H.323 Zones .. 34
H.323 Proxies.. 35
5.3.4. Bandwidth areas .. 35
5.3.5. Groups ... 36
5.3.6. DBase .. 37
5.3.7. Security .. 38
5.3.8. HTTP accounts .. 39

5.4. ENDPOINTS PAGE .. 40
5.4.1. Endpoints view .. 40
5.4.2. Endpoints Profiles / Basic parameters .. 42
5.4.3. Endpoints Profiles / Auto-provisioning ... 44
5.4.4. User access to IP-Phone settings .. 47
5.4.5. Static Entities .. 48
5.4.6. SIP Accounts ... 53

5.5. CALLS PAGE .. 55
5.5.1. Active Calls ... 55
5.5.2. Daily CDRs ... 56

3 – S5000 Reference manual – 2.0-ed1

5.5.3. Archived CDRs .. 57
5.6. EMBEDDED SERVICES PAGE .. 58

5.6.1. Services ... 58
5.6.2. Routes .. 60
5.6.3. Trunks.. 61
5.6.4. Trunks statistics ... 62
5.6.5. IP/Trunks mapping .. 63
5.6.6. Restrictions .. 63
5.6.7. SpeedDials .. 64

5.7. MEDIA PAGE ... 65
5.7.1. Media Entities ... 65
5.7.2. Media Termination Points ... 66
5.7.3. MTP Rules ... 68
5.7.4. Recorder .. 69

5.8. IPBX PAGE ... 70
5.8.1. IPBX DTMF commands and audio files .. 70
5.8.2. DTMF/IPBX commands disabling rules ... 71
5.8.3. Redirect rules .. 72
5.8.4. Global Auto-provisioning .. 74
5.8.5. Enterprise Directory administration ... 75

5.9. APPLICATIONS PAGE ... 76
5.10. LOGS PAGE ... 77
5.11. ABOUT PAGE ... 78

5.11.1. Product .. 78
5.11.2. Vendor ... 79
5.11.3. Updates ... 79

6. S5000 ADVANCED TECHNOLOGIES AND CONFIGURATION GUIDE .. 80

6.1. SIP INTERFACE ... 80
6.1.1. Registrar Server .. 80
6.1.2. Proxy Server .. 81
6.1.3. SIP/H323 Gateway .. 82

6.2. MEDIA ENTITIES ... 83
6.2.1. What for? ... 83
6.2.2. Usage .. 83
6.2.3. Limitations .. 85
6.2.4. Use with application programming interface .. 85

6.3. MEDIA TERMINATION POINTS (MTP) ... 86
6.4. AUTOMATIC NAT HANDLING ... 88
6.5. INTER-SITE TROUGH INTERNET (NO VPN SOLUTION) ... 89

6.5.1. Routing configuration ... 90
6.5.2. Definition of global listener for external sites ... 91
6.5.3. Router/Firewall settings .. 92

6.6. ENDPOINTS REGISTRATION CONTROL.. 93
6.6.1. Reject a set of endpoints .. 93
6.6.2. Accept a set of endpoints ... 93

6.7. ADVANCED ROUTING ... 94
6.7.1. The simple way .. 94
6.7.2. The advanced way ... 94
6.7.3. Routing according to CODECs ... 97
6.7.4. Routing according to DNS (SRV, NAPTR, ENUM)... 97

a) Principes .. Erreur ! Signet non défini.
b) Use .. 98

6.8. RESILIENT SOLUTION .. 99
6.8.1. Alternate Gatekeeper... 99
6.8.2. Automatic discovery .. 99
6.8.3. S5000 Groups .. 100
6.8.4. Automatic restart with jWatchdog ... 102

6.9. RSVP SERVICE ... 104

4 – S5000 Reference manual – 2.0-ed1

6.10. SECURED CALLS WITH TRANSPORT LAYER SECURITY .. 105
6.10.1. Certificate and private key needed .. 105
6.10.2. Configure Security parameters ... 106

a) Auto Generate your S5000 certificates files with openssl and HTTPS access .. 107
6.11. T120 PROXIFICATION ... 108
6.12. IPBX MODE .. 109

6.12.1. Virtual lines: 1 call, N lines .. 113
6.13. SHORT MESSAGE SERVICE .. 114

7. APPLICATION PROGRAMMING INTERFACES ... 115

7.1. S5000 API CONCEPTS ... 115
7.1.1. Use cases: Control and Interfere call processing ... 116
7.1.2. Use cases: Terminate calls with media (standard) ... 117
7.1.3. Use cases: Terminate calls with specific media. Gateways design. (Advanced) 117
7.1.4. Use cases: Transmit privateData in a call .. 119
7.1.5. Multithread and sessions ... 120
7.1.6. Use cases: Applications for VoIP monitoring only ... 121
7.1.7. Advanced considerations ... 122
7.1.8. SIP Proxy entities, Client, Server and INFO data transport ... 125
7.1.9. What API subset for what usage? .. 132

7.2. JAVA API (JGKXAPI) .. 133
7.2.1. How does it work? ... 133
7.2.2. My HELLO WORD ... 134
7.2.3. Packages and Classes ... 136
7.2.4. Class jgkx .. 137

b) General functions ... 137

c) Special SIP Proxy functions ... 143

d) Special Generic Gateway Controler functions ... 145
e) Administration functions .. 149

7.2.5. Class GKMSG and events ... 151
a) VoIP Signaling events (from Voip events) .. 152
b) Response events (from application commands) ... 153
c) GKMSG methods ... 156

d) GKMSG attributes .. 156
e) Attributes per event .. 159

f) H323 Release reasons ... 162
g) SIP Release reasons .. 163

h) Examples of use ... 164
7.2.6. Class CTX ... 165
7.2.7. Class SETUP_REPLY ... 167
7.2.8. Class RRQ_REPLY ... 170
7.2.9. Class ARQ_REPLY ... 171
7.2.10. Class CONNECT_REPLY ... 172
7.2.11. Class OLC_REPLY ... 173
7.2.12. Class OLCACK_REPLY .. 174
7.2.13. Class SUBSCRIBE_REPLY ... 174
7.2.14. Class templateEmbedService .. 175
7.2.15. Class templateRoute .. 176
7.2.16. Class templateTrunk .. 177
7.2.17. Class templateProvision .. 178
7.2.18. ECMA-323 Package .. 181
7.2.19. Mini Call Center Development.. 194

7.3. C API (GKXAPI) ... 198
7.3.1. How does it work? ... 198
7.3.2. My HELLO WORD ... 198
7.3.3. Classes .. 202

5 – S5000 Reference manual – 2.0-ed1

7.3.4. Class GKX ... 203
7.3.5. Class GKMSG ... 204
7.3.6. Class CTX ... 208
7.3.7. Class RRQ_REPLY ... 209
7.3.8. Class ARQ_REPLY ... 210
7.3.9. Class aRQ_REPLY .. 211
7.3.10. Class SETUP_REPLY ... 212
7.3.11. Class CONNECT_REPLY ... 213

8. ADMINISTRATION VIA TCP SOCKET API .. 214

8.1. ENDPOINTS ... 214
8.2. ROUTING... 222

8.2.1. RoutinG Embedded Service ReQuest (RGESRQ) ... 222
8.2.2. RoutinG RouTe ReQuest (RGRTRQ) .. 224
8.2.3. RoutinG TRunk ReQuest (RGTRRQ) .. 225

9. APPENDIX .. 227

9.1. INSTALLATION OF MATRIX DONGLES WITH LINUX UDEV SYSTEM .. 227

6 – S5000 Reference manual – 2.0-ed1

2. Introduction

Thank you for your choice of the S5000 Softswitch and IPBX.
The S5000 allows you to set up and run IP voice and video
communications within your network.
Operators can take advantage of the advanced routing capabilities.
Enterprise users can take advantage of the IPBX features.
Advanced users can easily develop complex new features with
the S5000 APIs.

This manual contains all the necessary material:
 to install the product,
 to set up and run a working configuration with a number of phones

and other equipment (Gateways, MCUs, other softswitches)
 to administer the system
 to develop new advanced services

Experienced users can take advantage of the development APIs to build and run advanced call control
services and gateways, as described in the second part of this document.

This manual is not a VoIP, H323, SIP and other protocols guide and the reader is expected to have
some basis on the subjects.

This manual applies for S5000 version 1.95r0 and above and API JGKXAPI version 1.16rc30 and
above. Some features are available in selected version only. Contact M2MSOFT to upgrade your
software if you need some new features.

Feel free to make us hear from you !

If any part of this manual appeals comments from you or if you do think some improvement can be
made, we would be glad to hear from you to offer better manual quality and guidance.
Thanks in advance to report any suggestions to :

contact@m2msoft.com

or

Products support
M2MSOFT
14 Rue de l’Europe, Parc d’Activités du Terlon
31850 Montrabé
France
Call from France : 0820 200 263 (0,09 Euro TTC/min)
Call from other countries: +33 820 200 263

mailto:contact@m2msoft.com

7 – S5000 Reference manual – 2.0-ed1

3. M2M-S5000 Concept

3.1. The GIMS framework

M2M-S5000 is part of a global framework solution called GIMS (Global IP Multimedia System)

dedicated to provide users all necessary components to create and run voice, and video
communication applications. GIMS contains the M2M-S5000 and includes other components such as
programmable protocol stacks (H323 is one of them), C3000 audio/video Conference Bridge, A6000
audio servers… for example.

Fig.0. GIMS global offer and ability to serve a number of services

8 – S5000 Reference manual – 2.0-ed1

Fig.1: a typical S5000 Softswitch centric system with a media server.

A set of voice and video terminals are connected to the S5000 either through IP access or through an
ISDN Gateway. Specialized components such as a conference bridge MCU (C3000), an interactive
vocal system (A6000), a messaging system (M5000), a recorder system (GR4600), an ISDN/VoIP
gateway (G4000) are used for special purpose on call termination.
This set is able to perform a rich range of services with and without the S5000 APIs and is called the
GIMS architecture.
The following chapters describe the M2M-S5000.

9 – S5000 Reference manual – 2.0-ed1

3.2. S5000 features

M2M-S5000 is a solution for voice and video communications and services. A framework environment
to run applications and handle voice/video equipment and a framework environment to build such
applications.

Fig.2 S5000 connects all a heterogynous environment

M2M-S5000 functional features are:

 Terminals/MCU/gateways H323 or SIP registration.

 Point to point VoIP calls between IP terminals, MCU, Gateways, mixed H323 and SIP calls.

 SIP registrar, proxy and B2BUA application server (product option).

 Signalling H225, H245, SIP-UDP/TCP/TLS flows routing and control.

 Media/RTP routing and Media Termination Points management (local and remote).

 T120 proxification.

 Embedded media server (for voice announcements).

 Advanced routing (load balanced trunks, backup, limitation, with busy and no answer control).

 Group redundancy and multicast discovery (for H323 and SIP).

 Forward selected calls or on no answer / busy / unavailable destination.

 Call transfer, call waiting.

 Called and calling numbers modifications.

 Multi ringing

 Unique feature of virtual lines IPBX system (1 physical line, N virtual lines on 1 media link)

 Call distribution thru queues

 Adjacent areas calls management through inter S5000 or inter proxies calls

 Secured calls through crypto signalling (and optionally media)

 Call detailed records generation per call

 Softswitch and IPPBX modes with Session Border Controller (SBC) functions (1-IP)

 JAVA and C Program Interface (API) to develop specific services that suit your needs.

 Embedded and secured Web administration interface.

 Multiplatform and Multi-OS.

10 – S5000 Reference manual – 2.0-ed1

M2M-S5000 technical features are:

 Support for protocols: H323v4, H225.0, RAS, Q931, H245,
H450, T120, SIP (RFC3261, RFC2833, DTMF-INFO, and
more) on UDP, TCP and TLS.

 RSVP (RFC2205, RFC2210, RFC2215) support for media
channel reservations.

 TLS 1.0 support for secured calls and optional SRTP

 Routed modes H225.0/Q931 and H245 (can be disabled).

 H323 Fast-Start support.

 H245 Tunneling support.

 Support for Gatekeeper Discovery (GRQ).

 Support for H323Annex G, LRQ.

 Support for multicast SIP Registrar Discovery.

 Embedded services and per terminal services: forwards, call
routing based on calling and called numbers, etc.

 Routing toward applications, load balanced trunks, alternate
trunks…

 Virtual terminal support for embedded media calls (RTP
connectors).

 Local and remote Media Termination Points management
(RTP management).

 Session Border Controller Function with complete NAT and
IP control and management (1 unique IP from the outside)

 SMS Short messages routing and generation(RFC3428)

 HTTP and HTTPS access to embedded web interface

 Multi-OS support: All flavors of Windows and LINUX (JAVA
JVM 1.4 and above).

 Support for the main market endpoints.

Common supported hardware

Terminals
Microsoft Netmeeting 3.01
Microsoft Messenger 4.7 (SIP)
Siemens Optipoint 300 and 400, C470IP
Vcon MeetingPoint 4.51, Vpoint
OpenPhone (Equivalence Ltd)
XLite/Eyebeam/Bria
TipTel, YeaLink, Innovaphone 110/230
SwissVoice IP10 (H323, SIP)
Leadtek BVP8770/8750
Polycom ViewStation 512
SjLabs SJPhone (H323 & SIP)
Thomson ST2030 (SIP), ST2020, ST2022
GrandStream B2000 (SIP)
UtStarCom F1000 Wifi (SIP)
SNOM 320, 820
Panasonic
AAstra 53i, 55i, OMM/RFP32 DECT/SIP
Kirk Dect/SIP Phones

Gateways, MCUs and 3rd parties
GW Cisco AS5300, IOS 12.2 (8) T
GW Cisco 2600, IOS 12.2 (8) T2
GW Cisco ATA186
Cisco Call Manager Express
GW Motorola (or VANGUARDMS) – T2 v5.6
GW Quintum D3000
GW AudioCodes MP102/104/108/11X
GW AudioCodes Mediant1000/2000
Alcatel OmniPbx Enterprise
OpenMCU
Radvision OnLan, ViaIP
Polycom MGC100/50
ALCATEL OXE v6/v7/v8 and above in H323
and SIP
TAINET Venus 28xx
PATTON Smart Node 45XX

and others on request. Please see the
release notes document for the latest
updates.

11 – S5000 Reference manual – 2.0-ed1

3.3. S5000 layers

One can define three main functional layers within the S5000:
– a connectivity layer to handle the terminals and voice/video equipment connections
– a route & control layer with call routing definitions, terminals and calls authorizations definitions,

bandwidth management, etc.
– a supervision layer with views on endpoints, calls, and applications
– the advanced services layer which enable to develop and run user applications on top of the S5000

with GKXAPI.

Fig.3 S5000 functional layers

Connectivity layer
Virtually all standard H323 and/or SIP terminals can be connected to the S5000. This layer does not
require any user actions. This layer implements H323, SIP, RSVP, TLS protocols.

Route and control layer
This is where rules apply for:
– a terminal/equipment to be accepted by the system
– a terminal/equipment to have a maximum bandwidth for its calls
– a terminal equipment to be accepted for a call
– a call to be directed to a location or another with or without numbers modifications

Routes and controls are set without any programming. These are simply set within the HTML graphical
interface of the embedded web server or within the S5000 configuration file.

Supervision layer
Calls monitoring, endpoints information, instant bandwidths are monitored through associated views
with the HTML web interface.

12 – S5000 Reference manual – 2.0-ed1

4. Installation

The S5000 Softswitch is multi platforms. The instructions below apply for most WINDOWS or
LINUX platforms.
For any unlisted platforms, please contact our technical staff for certified installations or ports.

4.1. Prerequisites for S5000 execution

To run the S5000 software, please verify your platform satisfies the following:
 hardware requirements
 software requirements
 additional software requirements

4.1.1. Hardware requirements

Please note that other hardware may be supported or added. Please contact our technical staff.

Hardware Requirement

Memory 128 MB of RAM is a minimum. 512 MB and more is
recommended for best usage and performance.

Disk-Drives A single disc drive is sufficient.
1 MB of Hard disk storage is required for the S5000 as a
minimum installation. This amount does not include the OS and
other necessary components.

Network cards 1 Ethernet network card with TCP-IP stack is a minimum.
Any number of cards is supported.

CPU Starting with Pentium II for light (up to 20 simultaneous calls) to
Pentium IV 2Ghz and above for huge performance (200 calls
and above)

4.1.2. Operating System requirements

OS software Requirement

OS core LINUX RedHat 6.2/7.3/9.0
LINUX Fedora Core 1/C2/C3/C4/C5/C6/C7
Linux RH Enterprise 3 WS
Linux Ubuntu (8.04, 10.04), Debian
or
Microsoft WINDOWS 98, 2000, Me, NT4, XP, 2003, VISTA,
Seven
VM-Ware 5 WS, GSX server are supported.

OS Graphical environment Not necessary.
Web access can be used form local or remote platform with an
HTML 3.2 Browser.

13 – S5000 Reference manual – 2.0-ed1

4.1.3. Additional software components requirements

Software Requirement

Java Virtual Machine Sun Microsystem, JRE 1.4 and above (a 50 MB disc drive is necessary)
M2MSOFT's installers install the necessary JVM for you automatically.

NOTE:
An S5000 version for older systems with JRE Java 1.1 is available upon
request.
It runs on Kaffe Jvm1.0.6 and above (a 3 MB disc drive is necessary) and Sun
Microsystem's JVM 1.1 and above.
(TOS functions will be only activated with Sun Microsystem >= JRE 1.4.x)

M2Msoft ControlCenter Mandatory for iPBX use

Directory Mandatory for iPBX use.
Use these for external Ldap storage of users.
OpenLdap or Netscape Directory Server 4.5 and above

TFTP Mandatory for iPBX use.

DHCP Recommended for iPBX use.

NTP server Mandatory for iPBX use.

MySQL server Optional. Necessary for configuration redundancy in case of cluster use.

Web Browser Optional.
One can use the following Browsers :
Microsoft Internet Explorer 4 and above
Netscape Navigator 4 and above
Konqueror, Mozilla FireFox, Apple Safari v3

M2Msoft License server
(LI100)

Optional.
Under conditions, S5000 license can be controlled by a remote network
server, enabling the use of floating licences. Contact M2Msoft for more
information.

4.2. The S5000 delivery package

The package is delivered on CD ROM or data file.

Fig.4 S5000 package

14 – S5000 Reference manual – 2.0-ed1

To run, the M2M-S5000 needs a license file or a USB dongle (or a license server under conditions).
You need to contact your system administrator to get such file or dongle according to the features
bought.
USB Dongles are unique to your delivery options and contains your specific licensing data.

There are automatic graphical installers for Microsoft Windows and Linux systems.
A manual installation for console only systems is explained in at the end of this part.
Licenses server use is described in 4.4.4 chapter. When using license server, you do not need any
license file nor dongle on the S5000 station, but for the license server.

4.3. Installation

4.3.1. Start from CDROM installer

Your delivery package is made of a CDROM with an install.htm file.
Start your web browser and load the install.htm file, then, select your platform.

After clicking on your package, choose Open on memory on the dialog box that appears.
This will execute the installer without saving unnecessary files on your hard drive.

4.3.2. Start from file installer

Your delivery package is made of a binary file install.exe (Microsoft Windows platform) or
install.bin (Linux platform).
Start the installer as follow:
 Windows : double-click on install.exe
 Linux: open a shell and enter : sh ./install.bin

NOTE: This is a graphical installer, please start your X11, KDE, or Gnome environment on
Linux systems before running the installer.

15 – S5000 Reference manual – 2.0-ed1

4.3.3. Graphical installation

Then the installer wizard will guide you through the installation steps.

A Java Virtual Machine is bundled and will automatically install locally with the product without
conflicting with your other JVM if any. You will choose your hard drive directory for install and take a
look at the release notes.

16 – S5000 Reference manual – 2.0-ed1

After the execution, you are done and you can start directly the S5000 program on Microsoft Windows
by launching the gkmain.exe program or gkmain program on Linux system.

Startup scripts

Microsoft Windows Linux

gkmain.exe gkmain Default starter (no
parameters)

s5kstart.bat s5kstart.sh Flexible starter that can be
configured.

s5kstart.bat (Microsoft Windows) and s5kstart.sh (Linux)

4.3.4. Manual installation

This installation is for specific environments.
If you received a packaged file.
The package is composed of the file named such:

s5000_1.95E-r1.tar.gz or s5000_1.95E-r1p1.tar.gz

Note: The generic product filename is s5000_x.y-rz.tar where x.y is the product version and z the

release value. (It can be used a patch with p in additional of r)

 Create a directory of your choice and install the package in this directory.

NOTE: It is not necessary to be root or system administrator to install nor run the S5000 except
for particular options enabling.

The directory will be named <ROOT> in this document.

 Unpack the distribution file within <ROOT> directory.

Windows users: use WinZip product

Linux users: use tar command
<ROOT> $ tar zxvf s5000_1.95E-r1.tar.gz

17 – S5000 Reference manual – 2.0-ed1

The directory content appears now like this:

<ROOT>

 s5kj.jar S5000 binary

 lic.txt License file

 S5kimages.jar Embedded web server pictures

 s5kstart.sh S5000 start script (Unix version)

 s5kstart.bat S5000 start script (Windows version)

 README.txt Read this for information on this S5000 release

 License.txt License contract

 <user> Directory with gk.ini

 <user>/gk.ini S5000 configuration file

 <media> Directory with audio files

 <media>/sample_message_media.sw Audio file as sample (G711Alaw format)

 <cert> Certificates and private key directory

 <matrx> USB Dongle management

 <tftp> Directory with Auto-provisioning files

 Customize your starting script.

The s5kstart script must be customized according to your environment.
Edit the file to set some mandatory paths.
Windows users: use WordPad.
Linux users: use vi or emacs or usual graphical tool.

Here is the customization to be made:

Windows
users

Edit line in s5kstart.bat Modify with

 Set
JAVA_PATH=<PATH_TO_JAVA_BINARY>

Enter here the complete path to the java
binary.
Example :
set JAVA_PATH=E:\j2sdk1.4.2_01\bin

Linux
Users

Edit line in s5kstart.sh Modify with

 export
JAVA_PATH=<PATH_TO_JAVA_BINARY>

Enter here the complete path to the java
binary.
Example :
export
JAVA_PATH=/opt/j2sdk1.4.2_02/bin

18 – S5000 Reference manual – 2.0-ed1

 Check you get a valid license file “lic.txt”
The lic.txt file must be in the local directory as a default configuration. A parameter within gk.ini file
allows changing this access.

 Start the S5000 binary

Windows users: start the s5kstart.bat.

The fig.6.below shows the execution starts. You may not have SIP system activated according to
your license file but you do not have to get out of execution.

E:\S5000>E:\j2sdk1.4.2_01\bin\java -cp ./gims1.0.jar
JH323.Gk.gkmai
n -c E:\S5000\gk.ini
Configuration file 'E:\S5000\gk.ini'
Current call model : ROUTED
M2M-S5000 - Gatekeeper Module $Revision: 1.83 $ -
(c) 2003-2006, M2MSOFT - All rights reserved
 (-v for full copyrights) started on 193.7.1.213
License valid until :12/2006
gkcom ready for incoming connections
ready for incoming connection
Ready for incoming requests
SIP registrar server started

Fig.5 S5000 stdout starting traces

Linux users: # <ROOT> $./s5kstart.sh

The execution window looks the same as the fig.5.

The S5000 is now up and running, ready to register endpoints, gateways and conference bridges.

Please refer to your terminals and other equipment configuration manual to connect them to the
Gatekeeper.
The Gatekeeper IP address must be the one you see on the starting window.
There is no filtering on endpoint registration in the default S5000 configuration.

4.4. License settings

After installing is done, one must set the license in order to have the S5000 run with the expected
functions and capabilities.
The S5000 capabilities are controlled with a licensing procedure.
Licensing is based on either or the following modes:

 Dongle system, this allows for the maximum flexibility, the S5000 can be executed on different
platforms with just the USB dongle to connect

 License file system, this does not need additional material and is the quickest way to run as we
can deliver the file by electronic mail or http portal. This is also a way to limit program execution to
only one hardware platform. The license file depends on the physical platform.

 Licenses server system, this is reserved to large environments with multiples M2Msoft products
and stands for floating licenses. Your S5000 connects to a license server program on the network
that gives or forbids the S5000 execution.

19 – S5000 Reference manual – 2.0-ed1

4.4.1. License general parameters

When you request an M2Msoft product license, either on dongle or file or license server (*), you
receive the following data from M2Msoft by email or web portal or mail:

 option line
o Mandatory data, prepared for you by M2MSoft that contain all your product capacities:

maximum number of registered endpoints (‘-t’), maximum number of concurrent calls (‘-t’ and
‘-k’), g729 capacity (‘-g729’), etc. Ask your representative for details if needed.

o All recognized capabilities are show within web page : “About”: see “Installation checking”
below

 description line
You need to keep these data for reference.
You need to enter these data in the About web page (see § 5.11.1), exactly as shown on the
documents from M2Msoft.

(*) Only available under conditions. Contact M2Msoft if you need a license server licensing

The web access is allowed even with no valid license.

If you have a limited time license, this will be shown automatically at run time and within About web
page (see Installation checking § 4.5, and About web page § 5.11).

4.4.2. Dongle settings

Enter the following in the ‘About’ license parameters (web page § 5.11.1).

Please note:

The dongle you received is hard-coded for you, this is not an USB storage key and is dedicated to
be used with your S5000. You do not need to install any additional drivers after a correct
S5000 installation, the dongle will be detected automatically by the S5000 product.
Be sure to let the dongle connected all the time running the product.
Note: for Linux kernels v2.6 and above please see the appendix 8 for udev configuration.

4.4.3. License file

Enter the following in the ‘About’ license parameters (web page § 5.11.1).

Copy your license lic.txt file within the
installation directory of S5000 or enter the

license key (32 chars) directly from this next field.

 Provided options example

 Provided options example

20 – S5000 Reference manual – 2.0-ed1

4.4.4. License given from license server

Enter the following in the ‘About’ license parameters (web page § 5.11.1).

You do not need any lic.txt file within the installation directory of S5000.

The important field is the License servers’ field that keeps one or more license servers.
Enter here ip address and tcp listen port of the M2Msoft license servers available on your network.

The M2Msoft license server can distribute any number of licenses and is named LI100. The LI100 is
available under conditions.

Fig.6 S5000 connected to remote license server

 Provided
 options example

21 – S5000 Reference manual – 2.0-ed1

4.5. Installation checking

In order to check the installation, you first have to start the software (see previous chapter). Then, take
advantage of the embedded web interface (see§ 5).

 Start a web browser on the local host or on a remote machine.

 Choose the following URL (port can be configured, the default is shown here):

http://<s5000-IpAddress>:8000

You have to check if the license is valid.
If the license is not valid or not found, NO LICENSE will be displayed on each web page.
You can verify the license options and some other information about product by clicking the “About”
button:

Fig.7 S5000 About page

Troubleshooting:
In case of an administration page unavailable, please check the following:

 check your IP connection to the host

 check that the s5kstart script is still running (or check java processes on the platform)

22 – S5000 Reference manual – 2.0-ed1

4.6. ControlCenter

The M2Msoft ControlCenter acts as a watchdog monitoring selected M2Msoft applications such as
S5000 and some other M2Msoft products.
The ControlCenter must be installed on a Linux Debian/Ubuntu platform.
It allows to configure the Ethernet interface parameters.
To access to the ControlCenter Web: http://<ipaddress>
The default M2Mbed device IP address is 192.168.3.20.
The default ControlCenter administrator password is ‘admin’.

 Access to the application web service (if running).

 The application is stopped and not monitored.

 The application is monitored but is not running.

 The application is running.

 Access to application monitoring parameters.

 Start the application.

 Stop the application.

 Halt the device.

 Restart the device.

:%20http:/%3cipaddress%3e

23 – S5000 Reference manual – 2.0-ed1

 Access to ControlCenter general parameters.

 Save all ControlCenter settings.

 Start TCPDUMP Start/Stop a TCPDUMP capture on network interface.
 Log files download Access to the download page (Tcpdump and logs files).
 System Time Update the system Date and Time.
 Products sw. update To update any of products software

24 – S5000 Reference manual – 2.0-ed1

General Parameters:

 ETH0 IP address IP address for first Ethernet interface.
 ETH0 Mask IP mask for first Ethernet interface.
 ETH1 IP address IP address for second Ethernet interface.
 ETH1 Mask IP mask for second Ethernet interface.
 ETH2 IP address IP address for third Ethernet interface.
 ETH2 Mask IP mask for third Ethernet interface.
 Default gateway Default gateway for first Ethernet interface.
 DNS 1 First DNS server IP address.
 DNS 2 Second DNS server IP address.
 Web port ControlCenter HTTP port (default=80).
 DHCP Server Enable/Disable DHCP server. (Runs only if scope is correct).
 DHCP Scope Range IP addresses range for phones and PC (within local subnet).
 Perm. DHCP lease To set IP/MacAddr mappings
 Static Routes To set IP static routings.
 Traces To run ControlCenter logs.
 Admin password Web ControlCenter password.
 Tcpdump options Tcpdump maximum file size.
 Timezone
 Auto-Restart param. Scheduler for automatic system restart.
 Daily backup When checked a complete configuration backup is done at restart

 time.

25 – S5000 Reference manual – 2.0-ed1

Application monitoring parameters:

This section allows to configure:

 The application monitoring status

 The monitoring delay

 The web port of the monitored application

 A command to archive product logs

In the following case the s5000 is monitored by checking response on port 8000 every 10
seconds.

 Monitoring delay Delay in seconds between application checks
 Monitoring port TCP port used for application check (web port)
 Archive logs now To store and archive application logs.

System time update:

This section allows to locally update date and time (necessary if NTP requests over Internet
are not allowed)

Log files download:

26 – S5000 Reference manual – 2.0-ed1

5. Configuration and Administration

The S5000 provides an embedded Web interface which let you configure and supervise the system.
The web interface has an opened and a secured mode with login/password and accounts.
If the secured mode is enabled we first have to login to access (see § 5.3.8).
The web interface has also a crypt mode with TLS access through https.

http://<S5000 ip address>:<configured port>

or
https://<S5000 ip address>:<configured port>

5.1. Login Page

NOTE: By default, the secured mode (Multi-Users) is disabled and no default user is configured.

27 – S5000 Reference manual – 2.0-ed1

5.2. Home Page and persistent buttons

At the left side of each page a list of buttons is persistent. It lets you directly access from any page to
another topic.

f

Fig.8 S5000 letf side buttons

28 – S5000 Reference manual – 2.0-ed1

In secured mode all pages contain the button Logout to go back to the Login page:

All the pages (excepted Home and Login pages) contain the button Home to go back to the Home
page:

5.3. General parameters page

General parameters page is subdivided in several sections selectable with tabs.

The following sub-chapters describe all the parameters definition.

29 – S5000 Reference manual – 2.0-ed1

5.3.1. General

 Fig.9 S5000 General Parameter page

 Name A softswitch name to be displayed in the Web-based administrative

interface. (Useful when multiple S5000 are started).

 Address IP address for the Gatekeeper. * means listen on all interfaces.
If an address is set, only calls received on the associated network
interface will be handled.

 API Max timer Timeout after a request sent to an application without response (in sec).

 No API / Registration

 No API / Calls

 API Port The TCP port for the Application Program Interface (API).
This is the port number that the applications will use to reach the S5000.

 HTTP Port Defines the web portal access port.

 HTTPS Port Defines the secured (HTTPS) web portal access port (0 disables it)

 CDR File Name Set a CDR file name to be written in real time. Files are names

30 – S5000 Reference manual – 2.0-ed1

<CDRfile>_date.extension where extension is 0, 1,...

 CDR File Size Global size of all CDR files, in bytes. System is overwriting then the
cycling file system.

 CDR File Number Maximum number of CDR files for each date.

 CDR column separator CSV file columns separated with character ‘;’ or ‘,’

 Multi-Users When checked the web is secured by HTTP accounts. (See § 5.3.8).

 IPBX generic enabled Enable/Disable enterprise IPBX features

(If IPBX is enabled a local MTP must be used for all calls, see Media
chapter).

 Idle state timer at startup

 Call max duration For SIP-SIP calls, automatically clear call after that duration in seconds.
 Set -1 to have unlimited duration.

 Alerting max duration

 Timezone

 Media Language

 H.C.G.

 Last saved config. Date of configuration file in use.

31 – S5000 Reference manual – 2.0-ed1

5.3.2. SIP

Fig.10 S5000 SIP parameter page

 SIP Domain The SIP default domain for the S5000 that acts as REGISTRAR and

PROXY server. In case a SIP terminal does not provide any domain (host
or IP address), this domain will be set by default. For the SIP to H323
communication, all H323 systems are added an H323 alias in the form
e164@defaultDomain.
Note: if an invalid value is set there, calls may not establish correctly.

 No Strict Domain Ctrl If checked, allow endpoints that come with different requested
domain, to register here.

 EndPoints Closed M. Intelligent Security System. If checked, make a strict check of all
 registrations and calls based on what is known at time of parameter
check.
-Only already registered terminals can register again and back.
-Anti spoofing is made on those terminals to enhance protection
-Only known external IPs can have calls entering
-Only registered endpoints can have outgoing calls
This mode can work alone or coupled with the DIGEST mode to have
 a more protected system.
- Intrusions are logged within Logs/Intrusion page
NOTE: however a fully protected system will have to add protection on
the router and firewall rules and monitoring (these are administrator tasks)

 Standard listeners Transports layers can be enabled/disabled here. Choose any of:
udp: SIP UDP unicast listener. UDP port=5060.
mcast: SIP UDP discovery multicast listener. UDP port 5070.
tcp: SIP TCP listener. TCP port=5060.
tls: SIP TLS listener. TCP port=5061. TLS layer needs some security
settings to work. See § 6.10 for detailed information about S5000
Secured Transport Layer feature.

 SIP TTL The time to live, in seconds, to apply to endpoints that do not advertise
any duration. It is also the minimum TTL accepted for registrations.

32 – S5000 Reference manual – 2.0-ed1

 Forced TTL This is the forced ttl replied to registrations. Checking this will force

endpoints to adjust their ttl to the SIP TTL value.

 SIP Authorization ‘None’ when no special registration control is done, and ‘Digest’
(RFC2617), when a challenge operation will take place at every
registration to control the endpoint name and password. The password is
to be set within the Endpoint profile access.

 SIP Authorizat. realm This is the special name associated with a SIP Digest account. Used
when mode=DIGEST.
A special realm value is sometimes expected from SIP endpoints or
iPBX. Change it to your needs. (RFC2617).

 Remove support timer When checked s5000 does not forward the “timer” phrase from
“Supported” attribute of INVITE SIP messages. It is useful to disable the
Session expiration timer of SIP endpoints.

 Remove support100Rel When checked s5000 does not forward the “100Rel” phrase from
“Supported” attribute of INVITE SIP messages.

 Update message not...Avoid the UPDATE message being supported in calls.
Some systems use the UPDATE as a polling purpose and this may be
forbidden here.

 Drop 183 Session Prog When checked s5000 discard the 183/Progress message which can
prevent to hear the Early Ringing even

 Drop ICE SDP elements

 RFC2833 payload Value (97110) for RFC2833 DTMF according value in IPBX global
provisioning. See § 5.8.4. (-1 in case of SIP-INFO DTMF).

 DSCP SIP (0-63) Force the DSCP field to be set on outgoing SIP signalling messages.

33 – S5000 Reference manual – 2.0-ed1

5.3.3. H.323

Fig.11 S5000 H323 parameter page

 H.225 Routed When checked, the H225/Q931 messages are controlled by S5000. Else

S5000 process only RAS messages.

 H.245 Routed When checked, the H245 messages are controlled by S5000.

 FastStart allowed When not checked, the S5000 prevents FastStart mode on all H323
 calls.

 H.245 DTMF forced When checked, force H245 DTMF capability to be out of band only.

 RAS/GRQ Multicast Enable/Disable RAS multicast listener for Gatekeeper discovery.

 H245RoundTripDelay Enable/Disable H245 endpoints polling for keep alive while in call.

 Q931RoundTripDelay Enable/Disable Q931 endpoints polling for keep alive while in call.

 T120 Enabled Enable/Disable T120 proxification on this platform. If licensing does not
 allow this, the button is disabled.

 T120RoundTripDelay Enable/Disable T120 endpoints polling for keep alive while in call.

34 – S5000 Reference manual – 2.0-ed1

 Alternate GK Alternative H323 Gatekeeper IP address or hostname. See § 6.8 for
detailed information about Resilient Solution.

 Ras Default Port

 Q931/H245 Ports Rnge Q931 and H245 TCP ports range. Define the first and last allocated ports
within the S5000. This feature is very useful for secured network in which
only selected ports are allowed.

 RTP Ports Range RTP UDP ports range. Define the first and last allocated ports within
S5000 for media Entities or RTP translations. Each call needs 2 ports
(RTP and RTCP sessions). This feature is very useful for secured
network in which only selected ports are allowed.

 Global Bandwidth Global bandwidth (in bits/sec) available at start for all calls.

 EndPoint Bandwidth Global bandwidth value (in bits/sec) per endpoint. This is the maximum

allowed per endpoint per default. (An endpoint block can change the
maximum terminal value for a particular endpoint). When is set to -1 no
bandwidth is allocated to endpoints.

 RAS DSCP
 Q.931 DSCP
 H.245 DSCP

 RTP DSCP

 NAT NAT IP address for all calls. (Optional).

 FwdNoAnswer timer Timeout to forward call in No Answer case (in sec).

 H323 max TTL Maximum TTL accepted for endpoint registrations.

 Q931 forced Overlap

H.323 Zones

These are the rules defined for H323/RAS LRQ (Location Request) messages: adjacent gatekeepers
can be defined here.
But we recommend to use an alternate and generic way, suitable to all environments, to route calls
towards remote S5000: Static Entity + Routes in Embedded Services.

 Name Zone name.
 Destination Mask Destination pattern to reach endpoint on remote gatekeeper.
 Remote IP Remote gatekeeper IP address (default RAS port=1719).

35 – S5000 Reference manual – 2.0-ed1

H.323 Proxies

H323 Proxies are used to connect to external Gatekeepers that do not support calls to unregistered
endpoints.
H323 Proxy defines an entity within the S5000 that registers as an endpoint to an external gatekeeper.
Calls to this entity within the external gatekeeper are automatically handled within the S5000 and then
routed to any recipient, registered or not.

 Name Proxy name.
 E164 alias E164 alias for gatekeeper registration.
 Remote IP H323 alias for gatekeeper registration
 IP address Gatekeeper IP address

5.3.4. Bandwidth areas

The S5000 allows for multiples WAN links controls within a single S5000 controller entity.
It is not sufficient to limit globally the bandwidth; a more accurate view can be achieved when the
managed network is split as several areas with low bandwidth inter-areas.
By applying intelligent numbering plan and inter-areas bandwidths, the S5000 can handle the
maximum allocated bandwidth on all its managed endpoints.
To avoid congestion, and not apply a global bandwidth limit, one can define rules per route
(sourcedestination).

 Name Bandwidth area name.
 Source Mask Pattern matching calling party number.
 Destination Mask Pattern matching called party number.
 Bandwidth Allocated bandwidth in bits/sec.

36 – S5000 Reference manual – 2.0-ed1

5.3.5. Groups

Only available with Group option. See § 6.8 for detailed information about Resilient Solution.

Fig.12 S5000 Groups parameter page

 Group Enabled Activate the Group mechanism (must be disabled to change parameters).
 Id S5000 identifier in a group. The Master is the S5000 with highest Id.
 Channel Group identifier.
 Polling timer Define a polling period for every S5000 within the group to advertise the

 others (ms).
 Local interface To force a local interface to transmit and receive the supervision messages

 (useful when several Ethernet interfaces) .
 IP Cluster Enabled Activate the Cluster option which provide a virtual IP address as a unique

address for all group members
 IP Cluster Address Virtual IP address for cluster.

Master / Slave

Discovered S5000 IP addresses

S5000 ID. If member is lost ID=-1

37 – S5000 Reference manual – 2.0-ed1

5.3.6. DBase

This allows to store the S5000 configuration within database which can provide replication between a
publisher and subscribers server, useful in case of group running.

 Database type Only MySQL available.
 Node ID Each node must have an unique ID
 Publisher db host Publisher IP database address
 Local db host IP database address for local S5000 (same as previous if publisher)
 Database Name Database name for S5000 configuration storage
 Database User Database username for queries authentication.
 Database Password Database password for queries authentication.

A wizard is available to create a local database with previous parameters. The administrator account is
required to do this.
To enable database storage click green arrow. All S5000 configuration parameters are converted from
user/gk.ini file toward database.
To disable database storage click Red Cross. All S5000 configuration parameters are converted from
database toward user/gk.ini file.

38 – S5000 Reference manual – 2.0-ed1

5.3.7. Security

See § 6.10 for detailed information about S5000 Secured Transport Layer feature.

The S5000 can use TLS secured links for HTTPS access and VoIP signaling.

Please note:

Restriction may apply for exportation. Special binaries with low or no cryptography are available.
Please contact us.

For TLS/HTTPS and VoIP TLS, two (administrator defined) files must be entered.

 Security Certificate X509v3 asn1 DER certificate file.
 Private key Key file in PKC#8 format, asn1 DER.

Https browser compatibility

Browser OS Note

Mozilla FIREFOX 3.5.13 Linux UBUNTU 8.04
Microsoft Windows XP

Microsoft IE 8.0.6 Microsoft Windows XP Please force SSLV3

Apple SAFARI 5.0.5 Mac OS X

39 – S5000 Reference manual – 2.0-ed1

5.3.8. HTTP accounts

The web interface can be secured with definition of login/password accounts that are authorized to
connect. In this mode, only defined users can connect and see the S5000 administration and
configuration. Sessions have limited time duration (15 minutes of non-use).
There are different levels of accounts, with special properties.

The mode is enabled/disabled within the “General Parameters” see § 5.3.1).

 Name Account name.
 Login User identifier.
 Password User password.
 Level 0=Admin level: All data can be read and written, reset can be done, save can be

 done.
 1=User level: All data except http account and Multi user mode can be read and
 written. Reset: disabled; save: disabled
 2=Guest level: Data are READ ONLY. Reset: disabled; save: disabled. Nothing
 can be modified. Useful for DEMO access.
 3=level:

 Language Web User language.

NOTE: It is also possible to access to an IP-Phone settings in user mode: Login is #<extension> (see § 5.4.4).

40 – S5000 Reference manual – 2.0-ed1

5.4. Endpoints page

Endpoints page is subdivided in several sections selectable with tabs.

This page allows to supervise endpoints, affect parameters to endpoints, create static (non-registered)
endpoints and manage SIP registration accounts.
The following sub-chapters describe all the features.

5.4.1. Endpoints view

Fig.13 S5000 Endpoints view page

It is possible to sort this list by Alias, by signalling type (H323 or SIP), by Type, by address, or by TTL

value: use the arrows in the title columns.
It is also possible to restrict the list using a filter example:

Fig.14 S5000 Filtered Endpoints view page

41 – S5000 Reference manual – 2.0-ed1

This area displays 3 types of endpoints:

 Registered endpoints,

 Static endpoints,

 Media entities.

A registered endpoint is a terminal, or MCU, or gateway, or proxy which dynamically registers to
S5000 using H323/RAS or SIP protocols.
This type of endpoints is displayed with:

 Main E164 alias

 H323 or SIP signalling protocol

 Signalling address

 TTL (Time To Live) value.

 A command to “unregister” this endpoint.
By clicking on Alias (shown as a link) a child window displays detailed information (Product ID,
extended aliases…) about the endpoint:

A static endpoint is a static definition of a remote entity or a local listener.
This type of endpoints is displayed with:

 Static entity name

 H323 or SIP signalling protocol

 Signalling address
To create a static entity see the § 5.4.5

A media entity is an embedded media terminal (see § 6.2 for more information about media entities).
Only its name (as an alias) configured in Media Entities chapter (see § 5.7.1) is displayed.
The link “connectTo” allows dialOut call to a remote endpoint (see Media Entities § 6.2).

Virtual lines status in
IPBX use

42 – S5000 Reference manual – 2.0-ed1

5.4.2. Endpoints Profiles / Basic parameters

This is used to define “a priori” redirection numbers for registered users.
Audio RTP port can be set for H323 to SIP calls to have direct media routing between endpoints.
The known RTP port for the H323 endpoint can be entered here. When set, this number is advertised
to called peer SIP endpoint in sip INVITE signaling.
In H323 to H323 mode through NATted systems, this can be used to have bidirectional RTP flow
(listener and receiver on the same source port viewed from the external sites.) Used in call with
destination is a StaticEntity with RTP enable and NAT address set.
Password can be set and used when S5000 SIP Authorization mode is set to “Digest”, to challenge
registrations from endpoints.

NOTE: Embedded Services have a higher priority over these rules.

Fig.15 endpoint profile definition

43 – S5000 Reference manual – 2.0-ed1

 Name Profile name.
 Alias Endpoint alias associated to the profile.
 Web User Pwd
 NAT NAT IP address for this endpoint (empty if no NAT).

The NAT address can be automatically detected when the endpoint
registers from a private network to a S5000 in a public network. In this
case no entry is needed. For endpoints that registers from internet into a
private network S500, NAT setting is needed here with public S5000
address

 Audio RTP Set H323 endpoint RTP port. Used for calls toward SIP endpoints.
 Group Group name for call Interception feature (IPBX use).
 Gateway mode To replace the endpoint alias in SIP INVITE request-URI field by the real

destination (copied from TO field).
 Allow Re RRQ
 H323/SIP with SDP
 URI alias
 Sip call supervised To check if the endpoint is still alive during a call.

(Useful to manage calls when the Wi-Fi phones loose the radio cover
during the communication).

 Registration linked with To accept this endpoint registration only if a ClientRegistrar/StaticEntity is
already registered (SIP operator). See § 5.4.5.

 Dialout Restrictions To apply a call restriction defined at § 5.6.6.
 SIP CallingPrefix
 Forward Type Destination alias to forward None, Always or Busy/No answer calls.
 Forward to Messaging Destination alias to forward to Messaging.
 Forward to other dest Destination alias to forward to other destination.
 Forward to No answer Timer to forward calls.
 Shared Line
 Eaves Dropping Allow
 Eaves Dropping Mask
 Codecs filtering
 Forced G729 Packetization
 Special Codec
 Ptime

44 – S5000 Reference manual – 2.0-ed1

5.4.3. Endpoints Profiles / Auto-provisioning

Manual configuration:
In IPBX mode some IP-Phones configurations are managed from S5000.
When auto-provisioning is enabled the phone configuration is provided to the device by TFTP.
For a large IP-Phone deployment, a serial auto-provision can be built from a CSV file (see ‘CSV file
transfers’ paragraph later in this chapter).

Fig.15bis IPPhone auto-provisioning

45 – S5000 Reference manual – 2.0-ed1

 Extension IP-Phone number.
 Auto provision Enabled if IP-Phone type is selected (Thomson, Panasonic or Aastra).
 Mac address Device MAC address.
 DHCP Dynamic IP address: Preferred configuration to obtain automatically

the TFTP server address.
In case of static IP address at least the TFTP Server IP address and
boot file must be configured within IPPhone.

 IP addr Device IP address if DHCP disabled.
 Mask Device IP subnet mask if DHCP disabled.
 Gateway Default IP gateway if DHCP disabled.
 Ethernet connection Auto, 100Mbps/Half-duplex, 100/Full, 10/Half, 10/Full.
 SIP Transport UDP or TCP Transport
 VLANs Distinguished Vlan for Voice and Data.
 Number of lines Max concurrent multiline (1~10).
 SIP authentication login SIP phone login required if DIGEST mode is enabled (see § 5.3.2).
 Sip authentic. password SIP phone password for DIGEST mode
 Display User identifier displayed on called phones.
 Time Zone IP-Phone local time zone (Default=value in IPBX page).
 Language IP Phone language displays. (Default=value in IPBX page).
 Country Tone IP Phone country for tones. (Default=value in IPBX page).
 Melody IP Phone ring melody.
 Disting. Melody for ext... If checked, the selected melody will be modified for calls from outside.
 Call waiting tone disabled To prevent tone when a call comes on 2nd line.
 F1 ~F10 Device key mapping. A key can act as speed-dial and supervisor

(with light) to check if another IP-Phone is in call. A key can also send
a DTMF sequence during call.

CSV file transfers:
For a large IP-Phone deployment, a serial auto-provision can be built from a CSV file.

 Upload Serial provision CSV File
This feature allows to transfer CSV file from PC to S5000 and all
the IP-Phone configurations may automatically be provisioned.
The CSV file contents the following fields separated with “,” or “;”
1- Extension [numerical string]
2- Phone type [Thomson-ST2030]
3- Mac address [12 hexa digits]
4- Display [text string without accentuated character]
5- Number of lines [numerical value from 1 to 10]
6- Time Zone [numerical value: see Time Zone table, empty for

default]
7- Language [numerical value: see language table, empty for

default]
8- Country tone [2 chars code: see country table, empty for

default]
9- DHCP [1=enabled, 0=disabled]
10- Static IP address [empty if dhcp]
11- Static IP mask [empty if dhcp]
12- Static IP gateway [empty if dhcp]
13- Forward type [None | Always | Busy | NoAnswer]

46 – S5000 Reference manual – 2.0-ed1

14- Forward address [destination number, empty if type=None]
15- Forward NoAnswer timer [numerical value in sec, min=10]
16- Ethernet Connection [numerical value: see Ethernet cctn table]
17- Interception group name

Depending of the type of phone, different Time Zone, language and Country Tone tables are used

Thomson and Panasonic Phones

Aastra Phones

In Aastra phones Time zone depends on the server NTP, To customize additional time zone parameters

use Time one Table

 Time Zone table

 Language Table

Country Tone table

 Save serial provision CSV File

This feature allows to download all the auto-provisioned IP-Phones
within a CSV file from S5000 to PC.
This file may be updated and uploaded later to the S5000.

Def-12:00 0 Def +03:30 16

Def -11:00 1 Def +04:00 17

Def -10:00 2 Def +04:30 18

Def -09:00 3 Def +05:00 19

Def -08:00 4 Def +05:30 20

Def -07:00 5 Def +05:45 21

Def -06:00 6 Def +06:00 22

Def -05:00 7 Def +06:30 23

Def -04:00 8 Def +07:00 24

Def -03:30 9 Def +08:00 25

Def -03:00 10 Def +09:00 26

Def -02:00 11 Def +09:30 27

Def -01:00 12 Def +10:00 28

Def +01:00 13 Def +12:00 29

Def +02:00 14 Def+13:00 30

Def +03:00 15

US (English) 0

fr (Français) 1

es (Espagnol) 2

de (Deutch) 3

it (Italiano) 4

no (Norsk) 5

ru (Russian) 6

pt (Portuges) 7

nl (Nederland) 8

US US

France FR

UK GB

Germany DE

Nederland NL

Italy IT

Spain ES

Czech Republic CZ

Portugal PT

Slovenia SI

Language table

English 0

Français 1

Espanol 2

Deutch 3

Italiano 4

Norsk 5

Russian 6

Portuges 7

Nedelands 8

Country Tone table

United States US

France FR

United Kingdom GB

Deutchland DE

Nederland NL

Italy IT

Spain ES

Czech Republic CZ

Portugal PT

Slovenia SI

Time Zone table
GMT-12:00 0

GMT-11:00 1

GMT-10:00 2

GMT-09:00 3

GMT-08:00 4

GMT-07:00 5

GMT-06:00 7

GMT-05:00 10

GMT-04:00 13

GMT-03:30 15

GMT-03:00 16

GMT-02:00 18

GMT-01:00 19

GMT 21

GMT+01:00 22

GMT+02:00 26

GMT+03:00 32

GMT+03:30 35

GMT+04:00 36

GMT+04:30 38

GMT+05:00 39

GMT+05:30 41

GMT+05:45 42

GMT+06:00 43

GMT+06:30 45

GMT+07:00 46

GMT+08:00 47

GMT+09:00 50

GMT+09:30 53

GMT+10:00 55

GMT+11:00 60

GMT+12:00 61

GMT+13:00 63

Ethernet connection

Auto 0

100Mbps/Half 1

100Mbps/Full 2

10Mbps/Half 3

10Mbps/Full 4

47 – S5000 Reference manual – 2.0-ed1

5.4.4. User access to IP-Phone settings

When the phone auto-provisioning is enabled, a user can access to a restriction of the previous IP-
Phone provisioning parameters to allow to personalize the ring melody, language, forwards, key, etc…

Note: This page is displayed in French if selected language is French (or Default if default language is French).

48 – S5000 Reference manual – 2.0-ed1

5.4.5. Static Entities

Static entities allow sending calls to and/or receiving calls from non-registered endpoints (a gateway
for example or another gatekeeper).
A remote site that has to be reached directly will be declared as a static entity in H323 or SIP mode.
A typical non registered endpoint will be declared as a static entity with a distinctive name and alias
(same as name for example) and the endpoint IP address.
This endpoint will then be referred within the routing engine (embed Services) as its simple name.

There is 2 different static entity modes:

 OUT: Used to send outgoing calls to non-registered endpoint or to register to an operator
registrar server.

 IN: Used to receive incoming calls from any or restricted non-registered endpoints. It acts as
listener on a fixed port. It contents a list of remote authorize IP addresses.

49 – S5000 Reference manual – 2.0-ed1

Fig.16 Static entity definition

50 – S5000 Reference manual – 2.0-ed1

 Mode OUT / IN. Adapts destination Address or Source addresses list.
 Name Static Entity name.
 Alias Can be the same as Name.
 Display Not yet implemented.
 Q931 Port Only used for IN mode.

H323: define here the local TCP port to listen for
incoming H323 direct calls. Common Q931 listener is 1720.
SIP: define here the udp or tcp SIP listener.
Forms are:
sip:port to listen on specific UDP port.
sip:tcp:port to listen on specific TCP port.

 RAS Port Not used.
 NAT An IP address that is to be set within all outgoing packets to this

StaticEntity address. The NAT parameter is generally set to the public IP
address of your network on a StaticEntity that is associated to the WAN.
All Q931 and H245 outgoing messages to your WAN have the
gatekeeper address replaced by the NAT address. H245Routed must be
enabled.
SIP case: all IP addresses within SIP messages are replaced by the NAT
field for SIP messages that go to the “Address” for StaticEntity OUT or
for all SIP messages that go to the party that initiates an incoming call
that enters here as a StaticEntity IN.

 RTP When enabled, this force all incoming media (RTP-UDP) packets from
the remote connection to be proxyied within the S5000 and thus directed
directly to the right internal endpoint. Two channels, one audio and one
video are translated per call.

 Supervision (Only for mode OUT) To enable a polling to check if the endpoint is alive.
This feature is used by Routes/Trunks to select a valid destination of call.

 SIP Asserted-Identity
 SIP Privacy:id
 SIP ’From’ rewriting
 SIP ‘Allow’ rewriting
 SIP ‘Supported’ rew.
 Called num. conv.
 Calling num. conv.
 G729 only
 Early Ringing
 183 to 180
 Convert DTMF to IN-BAND
 Forced iLBC
 Forced G729
 Special codec 1&2
 Ptime 1&2
 Client Registrar Enable/Disable registration to remote SIP provider (digest mode).
 Client Login Login of the account as given by your remote SIP provider.
 Client Password Password of the account as given by your remote SIP provider.
 Client calling party Source alias sent toward provider. Alias or Anonymous or Transparent

(Transparent=initial caller alias maybe processed by embedded service).
 Client TTL TTL for registration to remote provider.

NOTE: use this to listen on non
standard (non 5060) SIP ports.

sip:port
sip:tcp:port

51 – S5000 Reference manual – 2.0-ed1

 Address (Only for mode OUT) Destination endpoint IP address.

For SIP endpoint

Address must have form “sip: address”.

NEW: NAPTR search. The form sip:enum:<base suffix> where

 <base suffix> is the E164 database to search thru DNS (can be e164.arpa
for example). This enable a DNS search for this phone number. See
“Advanced routing: DNS chapter.

For H323 endpoint:
Address is in the form “address”.

 Pref. local SIP port Port can be added (:port). The default one is 5060 for SIP, UDP.
 and port is 1720 for H.323, TCP.

RSVP parameters (RFC2205)

Only available with RSVP option. See § 6.9 for more information about RSVP feature.

 RSVP Enable/Disable RSVP feature.

 Time values Refresh period (in ms) for rsvp reservation handled from here. S5000
automatically refreshes the reservation with new Path messages.

 Style RSVP resources reservations can be distinct or shared and the Style
defines this. Values are: FF (Fixed Filter), WF (Wildcard Filter) and SE
(Shared Explicit). FF is the most recommended option as it reserves a
distinct path for each RTP flow.

 Send FlowSpec Enable/Disable FlowSpec (See RFC2205 and IntServ information).

 Token Bucket rate Bytes/sec (See RFC2205 and IntServ information).

 Token Bucket size Bytes (See RFC2205 and IntServ information).

 Peak data rate Bytes/sec (See RFC2205 and IntServ information).

 Guaranteed rate Bytes/sec (See RFC2205 and IntServ information).

sip:enum:%3cbase%20suffix%3e%20where%20%09%3cbase%20suffix%3e%20is%20the%20E164%20database%20to%20search%20thru%20DNS%20(can%20be%20%09e164.arpa%20for%20example).%20This%20enable%20a%20DNS%20search%20for%20this%20phone%20%09number.%20See%20
sip:enum:%3cbase%20suffix%3e%20where%20%09%3cbase%20suffix%3e%20is%20the%20E164%20database%20to%20search%20thru%20DNS%20(can%20be%20%09e164.arpa%20for%20example).%20This%20enable%20a%20DNS%20search%20for%20this%20phone%20%09number.%20See%20
sip:enum:%3cbase%20suffix%3e%20where%20%09%3cbase%20suffix%3e%20is%20the%20E164%20database%20to%20search%20thru%20DNS%20(can%20be%20%09e164.arpa%20for%20example).%20This%20enable%20a%20DNS%20search%20for%20this%20phone%20%09number.%20See%20
sip:enum:%3cbase%20suffix%3e%20where%20%09%3cbase%20suffix%3e%20is%20the%20E164%20database%20to%20search%20thru%20DNS%20(can%20be%20%09e164.arpa%20for%20example).%20This%20enable%20a%20DNS%20search%20for%20this%20phone%20%09number.%20See%20

52 – S5000 Reference manual – 2.0-ed1

RSVP advanced parameters for OPWA (RFC2210 and RFC2215)

We implement a two-passes RSVP as defined within RFC2210 and uses the ADSpec parameter
informations.

 Send ADSpec Enable/Disable OPWA feature by sending/not sending ADSpec
 information element within Path messages. The following parameters define the
initial ADSpec content.

 IS Hop Cnt (see RFC2215) IS Hop counter. The number of ‘integrated

 services’ (IS Hops) aware nodes is updated here along the Path.

 Path Bandwidth estimate Initially required Bandwidth advertised within Path message

 MinimumPath Latency The initial smallest delay added to process the packet at that very
 node. Other crossed nodes will update this.

 Delta max End to end maximum required VoIP voice delay. This will be used
 to compute (magic formula here !) the new FlowSpec parameters within Resv
message

53 – S5000 Reference manual – 2.0-ed1

5.4.6. SIP Accounts

The S5000 manages secured SIP registrations with Digest mode.
SIP Account let you define accounts where you give a login and a password to your users to register
and place calls.
Several SDAs can be defined per SIP-account allowing an incoming call to be routed to a sip account
(to an IP destination) if the destination number matches any of the defined alias for the account and if
the account is registered at that time.

This is an Operator feature.

. Fig. Global Sip Accounts view

54 – S5000 Reference manual – 2.0-ed1

 Name Name this entry.
 Login Login information of the account. Can be a phone number. The

endpoint will need to enter this to register here.
 Password Account password information, goes with the login.
 Description A free entry to note informations about this account (company

name for example)

 Max inbound calls Maximum concurrent incoming and established calls
 Max outbound calls Maximum concurrent outgoing and established calls.
 Max total calls Maximum concurrent both way calls.

 SIP err. Code
 Preferred port Use (if not -1) this port to route calls to remote party (call will be

routed on the registered endpoint remote address and this port).
Usually one have Nated this port on the customer router.

 Codec Restriction To only accept call from user which contain the specified codec
and remove the others.

 No T38 If enabled, do not allow calls with T38 codec to establish.

 Aliases The list of SDA managed by this account. An incoming call for one
of those will be routed (sent) to this account. (See
EmbeddedService SIPACCOUNT)

 Restricted IP To only accept the specified IP of account.

 SIP Asserted

 Uncond Forward dest. When set, direct all calls to this account, any time, to the specified
 number.

 Backup destination In case the S5000 could not route calls for these SDA to the
destination, here is an IP address to send the call as an alternate
route.

 Supervision To enable a polling with endpoints and forward calls to backup
destination if polling is lost.

 Calling translation To translate source alias of incoming call.

 Dialout Restrictions To apply a call restriction defined at § 5.6.6.

 Routing to strict Alias

 Position Position in the SIP Account list.

CSV file transfers:
The SIP Accounts can be imported and exported from/to a CSV file.
To get the field contents export first.

55 – S5000 Reference manual – 2.0-ed1

5.5. Calls page

Calls page is subdivided in several sections selectable with tabs.

This page allows supervising and releasing active calls, control joined calls trough media entities, view
current CDRs (Call Detail Records), download and suppress archived CDR.

The following sub-chapters describe all the features.

5.5.1. Active Calls

This sample shows 3 call types:

 The first one is a pure H323 H323 call,

 The second one is a pure SIP SIP call (with original + final call-Id),

 The last one is a mixed SIP H323 call (with original + final call-Id).

Note: In IPBX mode, a connected call is a junction of 2 half calls connected to 2 media entities.
However in this case only one line is displayed in the main view with both real endpoints. But it is
possible to have the half calls display (with media entities) by clicking on “Call-legs view”.

The STATE column displays the call status: [Establishing], [Ringing], [Connected].
The CALLING column displays the calling party number (or source alias).
The CALLED column displays the called party number (or destination alias).
The CALLID column displays the call reference string.
The EXTRA column displays optional information such as MTP in case of Media Termination Point
used for the call (see MTP § 5.7.2). When mouse pointer is over MTP field an info box is displayed:

The pause command allows to split call participants and connect each of them to a media entity.
A join command join will be displayed to re-join both participants together.
These commands are supported for pure H323 calls only.

The disconnect command release the call.

56 – S5000 Reference manual – 2.0-ed1

5.5.2. Daily CDRs

This area displays the list of Call Detail Records of the current day. By default the list is sorted from

newest to oldest. The arrows allows to change the order.

The arrows allows to browse the page within the same day.
A CDR is created for each call terminated. The CDRs are stored in CSV format within a file archived
every day at 12:00pm.
The table extracts the main fields of the CDRs (see § 5.5.3 for the full CDR definition):

 Date and Time from the starting of the call.

 Call duration.

 Calling Party Number (From Alias).

 Called Party Number (To Alias) which accepts the call.

 Initial Called Number.

 Status (1)

 Call-ID (The original call part reference in case of iPBX mode).

(1) The status is displayed with 2 chars: The 1st one is the protocol; the 2nd one is the status at the end of the call:
 Protocol: S=Sip, H=323, M=Mixed
 Status: E=Establishing, C=Connected, J=Joined
(Ex: HE=H.323 establishing, SJ=Sip Joined …).

57 – S5000 Reference manual – 2.0-ed1

5.5.3. Archived CDRs

Fig.17 Archived CDRS pages

Cyclic file writing:
According to disc quota and number of local files allowed for the CDR (see General Parameters §
5.3.1), the CDR will be logged in a cyclic way according to the disc quota allocated.
A daily swap is also performed and the CDR counters are reset at midnight.
A new CDR files family is built every day.
An administration task is to define how many CDR days you want to keep within your server. All of the
available files are downloadable through the S5000 web interface.

The daily CDR file has the following name: CdrFileName_YYYYMMDD where:

- CdrFileName is configured at General Parameters: [CDR File Name] parameter.
- YYYY is the current year
- MM is the current month
- DD is the current day

The CDR file name can have an optional suffix such as _0 or _1 according the [CDR File Size] and
[CDR File Number].
From this area it is possible to download CDR files and to delete them.
CDR files are in CSV (Comma Separated Values) which can be ridden by standards spreadsheets.

Fields definition:

• dateTimeOrigination: The date and time when the call request started.
• OriginalCallId: Main call reference or 1st call part reference in case of iPBX mode.
• OrigIpAddress: Caller IP address.
• OrigIpPort: Called Call signal port.
• CallingNber: Caller E164 number.
• DestIpAddress: Destination IP address.
• DestIpPort: Destination Call signal TCP port.
• OriginalCalledNber: The original called number as dialled in the call request.
• FinalCalledNber: The real called number as replaced (if any) in case of redirect or transfer.
• DateTimeConnect: The date and time when the call connect occurred.
• DateTimeDisconnect: The date and time when the call release occurred.
• Duration: The duration (hours/minutes/seconds) of the call when established.
• TimeToRingDuration: The duration (seconds/ms) to get the Alerting from the Setup (H323 only).
• ReleaseCause: The release cause as advertised in Q931 or SIP Cause element.
• Status: XY. X:S=SIP, H=H323, M=Mixed, Y:E=Estab, C=Connect, J=Joined.
• FinalCallId: The 2nd call part reference in case of iPBX mode.
• Source Sip Account: The name of caller SIP account if exists
• Dest Sip Account: The name of called SIP account if exists

58 – S5000 Reference manual – 2.0-ed1

5.6. Embedded Services page

Embedded Services page is subdivided in several sections selectable with tabs.

This page allows configuring registration controls, digits transformation, simple and advanced routing,
call restrictions and Speed-dials.

Call as well as SMS Short messages routings can be handled precisely through the definition of
Embedded Services.
The following sub-chapters describe all the features.

5.6.1. Services

This is one of the most used features: this allows you to define precise routing rules based on called
numbers and calling numbers.
Define a name for your rule, a called number pattern (destination Mask), a calling number pattern
(source mask) and some actions to be made:

Fig.18 Embedded services page

Move Up/Down to change the
rules priorities

T=Target
R=Route
A=Application
A+R=Combined Appli + Route

59 – S5000 Reference manual – 2.0-ed1

 Name Service name.

 Type FORWARD: the call is always forwarded (to Target/Route/Application).
ALTERNATE: the call is forwarded to a Target only when the destination
is not currently registered.
RREJECT: the endpoint is not allowed to register the system.
RACCEPT: the endpoint is allowed to register the system. (H323 mode).
SIPACCOUNT: routing to a sip account rule. Consider the destination
mask to match a sip account name (as set in creating sip account within
the S5000). Any SDA defined within a matching sip account name will be
routed as destination.
SIPACCOUNTSRC: routing from a sip account rule. Consider the
Source mask to match a sip account name (as set in creating sip account
within the S5000). If the caller is identified in a sip account whose name
matches the source mask, then it is looked at the destination party.
This later can be used by operator to have different routing policies
according to sip account families. (The A_* sip accounts and the B_* sip
accounts for example)

 Sip account Mask For type=SIPACCOUNTSRC: the regular expression here matches a sip
account name of the caller.

 Source Mask For type=FORWARD or ALTERNATE or SIPACCOUNT: the regular
expression that is
expected to match on the calling number.
Default is ‘*’: all calling numbers, no restriction
Example: 22* means that all IP phones with number starts
with 22 will match.
It can be combined with Destination Mask allowing for very complex call
filtering based on terminal selection and called numbers.

 Destination Mask For type=FORWARD or ALTERNATE or SIPACCOUNTSRC: the regular
expression that is expected to match on the called number.
For type=RREJECT: the regular expression that is expected to match the
source alias.
Example: 78*: will reject registration of 78, 781…endpoints.
See Forward Pattern to reject vendor specific endpoints.
For type=SIPACCOUNT: the regular expression used to match a sip
account name and all of its SDA.

 Codecs Mask SIP only.
Specify a list of codecs expected for the routing to match.
Codecs mask can be any combination of:
+G729 expect G729 codecs within SDP
+G711A expect PCMA within SDP
+G711U expect PCMU within SDP
+G7231 expect G723 within SDP
Leave field blank to avoid codec control.
Combine multiple expectations as +G7231+G729 that defines that the

 call is expected to advertise G723 AND G729 codecs in order to match the
embeddedService rule.

 Forward Pattern For type=FORWARD or ALTERNATE. Modify the called number.

. (DOT) keep the digit from the original called number.
+ advance 1 digit, skip the corresponding digit in the original numbers.
[0-9] digit which replaces the corresponding digit position.
* to keep all digits without any change.

60 – S5000 Reference manual – 2.0-ed1

 New Calling Number For type=FORWARD or ALTERNATE or SIPACCOUNTSRC : modify the

 calling number.
. (DOT) keep the digit from the original called number.
+ advance 1 digit, skip the corresponding digit in the original numbers
[0-9] digit which replaces the corresponding digit position.
* to keep all digits without any change.
When type=RREJECT and Destination Mask='vendor', New Calling
Number must contain the productId (see Enpt. Registr. Ctrl § 6.6).
(Example: New Calling Number=Microsoft NetMeeting' will reject all
Microsoft endpoints).

 Target To forward call to a registered endpoint, Target=<@alias> (ex: @5182).

To forward call to a non-registered endpoint (such as gateway or
remote S5000) create a static entity and set Target=<StaticEntity name>.
To forward call to an application set Target=<Application name> and
check “Application” check box.
To forward call to a Route, let Target=* and select the Route (see below).
If the destination is not to be forced (embeddedService used for change
calling or called number) let Target=* .

 Route This selects an advanced routing instead a simple destination used by
a Target. Create Trunk(s) and Route and select the Route displayed in
the list box (see § 5.6.2).
It is possible to combine Application and Route. In this case the call is
first forwarded to the application and then forwarded to the Route
process.

5.6.2. Routes

The Routes allows to forward call according advanced routing rules, such as combined load balanced
and backup trunks managing Busy destinations, No-Answer, call limitations.
See Advanced Routing chapter § 6.7

Fig.19 Routes page

Fig.20 Route details page

A route contents ordered trunks. The route uses the first trunk. When this trunk is unavailable or busy
the route tries to use the next trunk. A trunk (see below) contents one or several targets (SIP or H323
destinations).
The list boxes allow selecting existing trunks, so the trunks must be created before.
To add an alternate trunk click ‘New’ button, to remove a trunk from the route click ‘remove’ link.

61 – S5000 Reference manual – 2.0-ed1

5.6.3. Trunks

The Trunks are selected by Routes and contain one or several targets as VoIP SIP or H323
destination. The targets are load balanced destinations and are scanned according the Algorithm
parameter. The call capacity can be limited in the trunk to allow the use of an alternate trunk in the
route. Another target within the trunk is tried when a call is released without connection (busy cases,
or unreachable destination…). Another target within the trunk can be tried when the call is not
answered after a delay (optional), it is useful for Contact Centers.
See Advanced Routing chapter § 6.7

Fig.21 Trunks and trunk details page

 Trunk name Trunk name used by Routes

 Max call To limit the call capacity within the trunk (for any target). Let the field
empty for no limitation.

 Algorithm FromFirst: The targets are scanned sequentially always beginning from
the first target in the list.
Rotary: The targets are scanned sequentially in load balancing mode.
MultiRing: The call is forwarded to all targets at the same time.

 NoAnswer timer Try the next target when no answer after the timer (sec). 0=infinite.

 New destination alias To change the final destination within the trunk. If this field contains “*”
the string will be added as prefix to the initial dialled number.

62 – S5000 Reference manual – 2.0-ed1

 Codecs filtering SIP calls only. Set here any codec names you may want to suppress for

 the outgoing call. (to force connection to establish on a specific codec)
Leave the field blank to keep the original codecs.
-G729 suppress the G729 codec from the SDP (named G729)
-G7231 suppress the G723.1 codec (named G723)
-G711A suppress the G711A law codec (named PCMA)
-G711U suppress the G711Ulaw codec (named PCMU)
Combine any of these to suppress multiple codecs. (-G711A-G711U ...)

Add and remove targets to/from trunk, and change the order with arrows .

Edit targets list:

Fig.22 Trunk’s targets list details page

Select a target and click Submit button.

5.6.4. Trunks statistics

This area displays some counters about calls in each configured trunks.

Fig.22 Trunk statistics page

 TRUNK Trunks name.
 NB OF TARGETS Number of targets within the trunk.
 MAX CAPACITY Max capacity of calls configured.
 ACTIVE CALLS Number of established calls in the trunk.
 MAX OF CALLS Maximum simultaneous established calls in the trunk.
 TOTAL OF CALLS Counter of calls since the last reset.

Click Refresh button to update counters, and Rest counters button to reset 3 last columns values.

List of registered endpoints alias

List of configured static entities

63 – S5000 Reference manual – 2.0-ed1

5.6.5. IP/Trunks mapping

This table allow to link a remote IP address with a trunk to manage incoming calls limitation.

5.6.6. Restrictions

This area allows to define restrictions for dialout calls. This restriction can be applied to
EndPointProfiles to restrict calls from SIP or H323 endpoints (see § 5.4.2).

 Restriction name Name used by EndPointProfile definition.
 Mode Accept: To only accept calls matching patterns and reject others

Reject: To only reject calls matching patterns and accept others.
 Patterns Regular expressions matching destination field of the call. The patterns

are separated by coma.
 Forward Optional. Destination address to forward the call in case of reject (can be

a local MediaEntity). If this field is empty the call is simply released.

64 – S5000 Reference manual – 2.0-ed1

5.6.7. SpeedDials

Manual configuration:

This area allows to define a list of global speed-Dials. This list can be uploaded from a CSV file (see
CSV file transfers later in this chapter).

 Received Number Dialled short number
 Translated Number Forwarded destination number.

Note: The translation is processed before Embedded Services.

CSV file transfers:

It is possible to transfer either (upload from PC to S5000 and download from S5000 to PC) the
complete list of speed-dials.

 Upload Serial Speed-Dial CSV File
This allows to upload into S5000 a list of global speed-dial from a
CSV file build on PC.
The CSV file contents the following fields separated with “,” or “;”
1 Received dialled (short) number
2- Forwarded translated number

 Download Serial Speed-Dial CSV File

This allows to download from S5000 the list of speed-dial into
CSV file on PC.
This file can be updated and uploaded later to S5000.

65 – S5000 Reference manual – 2.0-ed1

5.7. Media page

Media page is subdivided in several sections selectable with tabs.

This page allows configuring Media entities (embedded media file server), MTP (RTP relay) and MTP
rules. Also it allows to record audio files.

The following sub-chapters describe all the features.

5.7.1. Media Entities

Media Entities are internal audio resources (working as internal endpoint) used to connect calls with
play files features. A media Entity is defined with a name/alias and a “play file” to be heard whenever
someone connects (dial in or dial out) to this alias number. (G711A, G723.1 and G729 law format play
files). Media Entity works with H323 and SIP protocols at the same time.

Fig.23 Media entity detail page

 Name Media entity extension.
 File name File selection. It must be within <install>/media directory. Only G711 filesare listed

(G729 and G723 files are automatically selected according call capabilities and codecs configuration
(see below).

G711 file suffix is .sw
G723 file suffix is .sw.g723
G729 file suffix is .sw.g729

66 – S5000 Reference manual – 2.0-ed1

 Loop Unlimited repeats, or 1 until 4 repeats.
 Codecs Select preferred codecs order among G711A, G723.1, and G729.
 Multi-calls Allow concurrent calls for the same media entity.
 Wait and Retry

5.7.2. Media Termination Points

MTP allows defining RTP relays to translate media flows through fixed locations. This is useful for
operators who want to mask their customers IP addresses. It is also used for enterprises extended
services such as Hold, Transfers, call parks, etc….
We can define local MTP (in the same host than S5000) and remote MTP (to prevent RTP flows over
low rate WANs). MTP Rules define in which cases MTP are to be used, in a call per call basis.
See MTP chapter for more details § 6.3.
Optionally:

- MTP can handle SecureRTP vs RTP conversions. (RFC 3711)
- MTP can handle inband DTMF conversion from out of band RFC2833 or SIP INFO

Fig.24 MTPs status view

Status:

: MTP connected.

: MTP not connected

: Local MTP stopped.

: Start a local MTP

: Stop a local MTP

Fig.25 MTP detailed view

67 – S5000 Reference manual – 2.0-ed1

 Name MTP name used by MTP Rules.
 IP address MTP host address (or * if this MTP is in the same host as S5000).
 All IP Binding Checked to
 TCP Port TCP supervising channel.
 First RTP Port UDP/RTP port of the first media channel.
 NAT allowed To prevent automatic NAT (see figure below).
 Kill S5000 if MTP lost Kill S5000 if MTP cannot be connected. Only to be used with the

M2M-ControlCenter which surveys and restarts the applications.
 Dejitter buffer IN
 Dejitter buffer RTP dejitter buffer size (in ms) from 0 to 1000ms.
 Remote RTP port discovery Checked to auto detect the remote RTP port.
 AMP buffer Mode Checked to
 Max channels Set the number of local MTP channels. Not used for remote MTP.

68 – S5000 Reference manual – 2.0-ed1

NAT for MTP

Fig.26 MTP for intelligent natting

5.7.3. MTP Rules

MTP Rules define in which cases MTP are used and how media channels are selected. When a call
matches a source AND a destination condition, a corresponding MTP is selected with channels
allocation policy.

Fig.27 MTP rules page

 Source pattern. Regular expressions matching either:

- Source E164 alias
- Source sipAccount with form “SIPACCOUNT_<account name>”
- Remote RTP audio port with form “RTP_<port>”

 Destination pattern. Regular expressions matching either:
- Destination E164 alias
- Destination sipAccount with form “SIPACCOUNT_<account name>”
- Target staticEntity with form “SE_<staticEntity name>”

 MTP MTP selection
(“NO_MTP” allows to create a rule which prevent MTP use).

 Channel IN Forced channel number of incoming call-leg (RTP port=first RTP + 2*ch).
 Channel OUT Channel allocation way for outgoing call-leg.

69 – S5000 Reference manual – 2.0-ed1

5.7.4. Recorder

Recorder allows to record announce files in G711Alaw format. S5000 places a call toward your phone
and a prompt invites you to record announce. At the end of announce you press ‘#” key, then
announce is played and the call released. The file is saved within media directory and it can be listed
in all media lists (MediaEntities, IPBX…).

 File name. File name with .sw extension (extension added if omitted).
 Dial to Alias of phone which receive call and deposit announce.

IMPORTANT: This feature can be used only if an MTP is enabled (the MTP Rules are not used, the
first MTP found is used).

70 – S5000 Reference manual – 2.0-ed1

5.8. IPBX page

This page allows configuring enterprise IPBX features.

Required:
The IPBX mode must be enabled within “General Parameters” page.
At least a local MTP must be enabled for each call.
The users’ phones can be SIP or H323 phones.
The VoIP/PSTN gateway can be either SIP or H323.

5.8.1. IPBX DTMF commands and audio files

 Call Intercept DTMF sequence to catch a call that rings on another phone
that belongs to your group (see Group within Endpoint Profiles
page (§ 5.4.2).

 New Call DTMF sequence to get a new line during an existing call. The
actual remote phone is in hold (with music) and you are invited to
dial the number of the new remote phone (terminated with # key).
You can manage until 4 lines at the same time and switch
between them with #1, #2, #3, #4 sequences.
The New Call sequence is the first step to transfer a call or to
create a conference.

 Call Conference DTMF sequence to create a conference call with you and 2 other
lines. The conference is built with you plus the active line and the
1st line on-hold.
Note : For advanced conferences (more than 3 participants,
meet-me, video, recording…) consult M2Msoft for C3000
conference bridge.

 Call Hold/Retrieve DTMF sequence to Hold a call and let it playing music,
and to Retrieve (with same sequence) to reconnect.

71 – S5000 Reference manual – 2.0-ed1

 Party Line Clear DTMF sequence to release the call on active line without hang up

and to allow to retrieve another line in hold with #1, #2 sequence.

 Call Transfer DTMF sequence to transfer a call (from active line to 1st on-hold).
The call transfer is also processed when we directly hang up after
taking a new call and dial out before or after the remote phone
answer call (supervised or blind call transfer).
This DTMF sequence is necessary if you want to transfer a call
after some line switching (#1 / #2).

 Call Forward DTMF sequence to transfer a call (from active line to 1st on-hold).

 Shared Line
 EavesDropping
 Hold Music Global “Music On Hold” file selection.

 Transfer/Refer mode Transparent: Refer messages are forwarded to remote phones

Proxy: Refer messages are managed within S5000.

NOTE:
Use Transparent mode when you known that your involved
equipments support the REFER sip requests.
Use Transparent mode when you want to work over SIP trunks in
G723.1, or G729. (not G711).
In all other cases, use Proxy mode.

 Fwd/Moved tmp mode

 Redirect IVR extension Internal IVR extension to enable/disable a redirect rule.

NOTE: The iPBX commands defined below are entirely managed within the S5000 and are available
over any telephone (IP or thru PSTN or analogue systems), any endpoint system.
Furthermore, as more and more SIP telephones provides special contextual keys functions (with on
screen display) for:

- transfer
- call hold
- 3 parties conference

All these features are also supported by the S5000 and at the same time as the fully controlled
commands below.
The S5000 supports iPBX functions over complex environment with IP and non IP endpoints,
complex and basics endpoints.

5.8.2. DTMF/IPBX commands disabling rules

This table allows to prevent the DTMF processing for IPBX commands (transfers, conferences…).
When the DTMF matches any entry of this table the message is simply forwarded without
interpretation. The Source and Destination fields match the direction of the DTMF signal (but not the
direction of the call setup).

72 – S5000 Reference manual – 2.0-ed1

5.8.3. Redirect rules

You can create up to 20 Redirect rules with criteria to redirect calls to your offices.
The criteria are:

- Period of dates (empty means any date)
- Day of week (select Monday to Sunday)
- Time range (start hour and minutes, end hour and minutes)
- Source pattern (a call from where)
- Destination pattern (a call to where)

It is useful to redirect the call on an audio prompt, or an outside number, during closed office times or
days.
For example it is possible to redirect calls for operator for these 4 conditions:

- lunch time on working days,
- nights
- weekends
- days out of office

A redirection can be checked and forced by calling a vocal service (IVR) within S5000 to
activate/deactivate a redirection. The automatic cycle will be re used at the next transition of the rule.

73 – S5000 Reference manual – 2.0-ed1

 Rule In Service When checked, means the scheduler is activated on this rule: the rule will
be activated and deactivated when time (date and hours) comes.

 Name Rule name.
 D. Start Date start of redirection. Format is MM/DD, MM is month, DD is day of

the month (example: 05/12 means may – 12th)
 D End Date end of redirection. (Idem as previous).
 W. Days Days of week to enable redirection.
 Rule to stop (1~3) Selected rule to be avoid when this one is to be active.
 Src Pattern Pattern to match source alias of call (i.e. [0p*] to match PSTN or private).
 Dst Pattern Pattern to match destination alias of call (i.e. operator of enterprise).
 Redir. Forwarded destination alias. It can be a local Media Entity (see § 5.7.1).
 Gw keep init. calling Checked to keep initial calling number when call is forwarded again to

PSTN.
 IVR code Alias of internal vocal service for this rule. The IVR allows to force the

status (ON or OFF) of a redirection. The normal cycle will be
automatically re used at the next rule transition.

How is it scheduled?

1/ The date range is checked for the rule (no values means it is valid)
2/ If previous is valid, the week of day is checked
3/ If previous is valid, the hours and minutes are checked

Every rule is
given a name

Light on
redirection is
active now

At a glance,
control if the rule
is « on duty » (y)
or not

No dates
means :
Every day

Criteria 2
Days of the

week validity

Criteria 3
Time schedule validity

Criteria 1
Dates schedule

validity

74 – S5000 Reference manual – 2.0-ed1

5.8.4. Global Auto-provisioning

In IPBX mode the Thomson-ST2030 IP-Phones configurations are managed from S5000 (see § 5.4.3).
This section describes the common parameters for IP-Phones auto-provisioning.

 ST2030 TFTP File. Boot file selection within s5000/tftp directory.
 Dial Plan Mask to define the digit collected before the IP-Phone forward call.
 DTMF mode SIP-INFO (SIP message) or RFC-2833 (RTP EVENT message).
 Backup server IP IP address of backup s5000 (if exists).
 Messaging server address Messaging server IP address (for Message Waiting Indicator).
 Messaging server port Messaging server SIP port.
 Messaging server extension Messaging consultation service extension.
 Messaging deposit prefix Prefix of messaging deposit service
 Default Time Zone Global devices time zone (can be personalized on endpoint page).
 Default Language Global devices language (can be personalized on endpoint page).
 Default Country Tone Global devices country tone (can be personalized on ept page).
 TTL TTL of all Thomson-ST2030.
 Restart all Thomson-ST2030 Restart and Re-provisioning of all Thomson- ST2030.

75 – S5000 Reference manual – 2.0-ed1

5.8.5. Enterprise Directory administration

LDAP parameters

 LDAP Host IP and port server address (x.x.x.x:port). Default port=389
 LDAP Branch Sub tree of user entries
 LDAP Admin DN Distinguished Name of administrator account.
 LDAP Admin Pwd Administrator account’s password.
 Prefix rules / phone Prefix translations for calls dialled from phone (before:after,before:after,...)
 Prefix rules /web Prefix translations for click2talk from web (before:after,before:after,...)
 Name resolution To display caller name on phone screen if known in directory.

Import/Export directory entries

 Import Directory To transfer user entries from CSV file to the directory.
 Export Directory To transfer user entries from directory to CSV file.

(To get the field contents export first).

Entries management

Only the Name is mandatory

76 – S5000 Reference manual – 2.0-ed1

5.9. Applications page

M2Msoft releases C and JAVA APIs (GKXAPI / JGKXAPI) to build and run users applications that take
control of the calls and can authorize, reject, modify and control the communication at any stage of a
call.
For more information about the GKXAPI / JGKXAPI, please see API chapter 7.

Any number of different applications, acting on different terminals events or called numbers can be
started and connected to the S5000.

The application view shows all the connected applications and their associated contexts states.
A context state is a connection slot that the applications reserves.
Every application handles a number of simultaneous calls on selected conditions (for example, all calls
to number 911). When several applications listen the very same set of conditions, they work in a round
robin mode: the S5000 forward the calls in a cyclic manner to the different applications: this allow for a
distributed and robust service.

A connection slot is either waiting for call or connected. The green light is bright when connected.

Fig.28 Applications view with connected/waiting slots

NOTE: the number of allowed simultaneous calls can vary according to your license.

Slots inspection

Every application is working with connection slots. A Slot is an application context within the S5000.
Every slot is either connected or unconnected, showing a bright green led (connected) or a switched
off led (unconnected call).
By selecting a slot, a pop up window opens and refreshes periodically with the following informations:

- living call objects in the slot
o call objects are : CallWait, ClearWait, OLCWait (for all audio/video channels, for both

call parties), ConnectWait
- information associated with the object: state (started: the object is waiting an event ; stopped:

the object cannot take a new event anymore) and a value (RTP parameters, called number)

Fig.29 Application slot inspection

77 – S5000 Reference manual – 2.0-ed1

5.10. Logs page

Fig.30 S5000 logs view

 Categ. Enable categories to be logged.
 Level Minimum Syslog level logged among

Emergency, Alert, Critical, Error, Warning, Notice, Informational, Debug.
 Nb files Number of log files stored (if Output=File). 1 file sizes 10Mo.
 Output Output syslog selection :File (s5klog), Console, Syslog Server.
 Web Enable a temporary copy toward web buffer (60 Kbytes). A filter can be applied to this

buffer. When the buffer is full a “Clear” command is proposed.

Output Syslog server Configuration

Install daemon rsyslog: sudo apt-get install rsyslog
Edit the configuration: sudo vi /etc/rsyslog.conf
Delete comments (#) of those 2 lines:

$ModLoad imudp
$UDPServerRun 514

Comment those 2 lines:
#$PrivDropToUser syslog
#$PrivDropToGroup syslog

Edit configuration: sudo vi /etc/rsyslog.d/50-default.conf

At the beginning of the file add:

$template DynFile,"/var/log/m2msoft/%$year%%$month%%$day%.log"
:fromhost-ip, isequal, "127.0.0.1" ?DynFile
:fromhost-ip, isequal, "127.0.0.1" ~

Create an m2msoft directory for log:
sudo mkdir /var/log/m2msoft
sudo chown syslog:adm /var/log/m2msoft/

Restart syslog daemon: sudo service rsyslog restart

In this example, logs will be redirected to daily files in sub-directory /var/log/m2msoft and from local
host (127.0.0.1).

78 – S5000 Reference manual – 2.0-ed1

5.11. About page

‘About’ page is subdivided in several sections selectable with tabs.

This page displays information about Product and Vendor. It provides software and configuration
update tools.

The following sub-chapters describe all the features.

5.11.1. Product

Fig.31 S5000 Product information (version, license, etc.)

 Description A description associated with this S5000.

Can be a mandatory one in case of temporary licenses or a user defined
information string.

 License options The options string given with your license key. Do not change this line
unless you change of license key.

 License key The key written within lic.txt file

79 – S5000 Reference manual – 2.0-ed1

5.11.2. Vendor

Fig.32 S5000 Vendor information (contact)

5.11.3. Updates

This area allows to manage files transfer (upload and download) between S5000 and PC.

Fig.33 S5000 Update page

 Configuration updload(.ini) Step 1: Select you gk.ini file, A popup window opens for you to get

locally the gk.ini file. Only select gk.ini file previously saved from
the ‘Configuration download’ option.
Step 2: click upload button, the S5000 restarts automatically to
take care of the new file.

 Configuration download This file is to be kept to be restored in case of restore action on the
S5000 server.

80 – S5000 Reference manual – 2.0-ed1

6. S5000 Advanced technologies and configuration guide

6.1. SIP interface

According to a license option key, the S5000 is able to handle SIP terminals.
The S5000 supports the following:

 RFC3261 for general operation

 RFC2976 for INFO

 RFC2833 for DTMF thru RTP

 RFC2617 for Digest authentication

 RFC2243 for TLS 1.0

 RFC3265 for subscribe/notify extensions

 RFC2543/3261 (SIP basic call, statefull)

 RFC3581 (rport)

 RFC2833 (DTMF in band avec payload RTP special)

 RFC2246 (TLS 1.0)

 RFC3515 (REFER)

 RFC3428 (MESSAGE)

 RFC3325 (P-ASSERTED et P-Preferred)

 RFC3323 (Anonymisation)

 RFC3311 (UPDATE)

 RFC4028 (Session Expires)

 RFC3407 (Sdp session direct codecs description)

 RFC3420 (SipFrag and sip messages transport within sip notify)

 RFC3264 (dynamic media management within sdp – hold/retrieve)

 RFC4916 (change display/from capability while on call)

6.1.1. Registrar Server

The S5000 acts as a SIP registrar server for the following modes:

 UDP unicast

 UDP multicast (discovery)

 TCP

 TLS
It handles the registration (name, domain, ip address, time to live, etc) of SIP terminals that want to
have a central system to find the users and support services for them.

Handling unregistered sip terminals
Unregistered SIP terminals can be reached and can emit direct invite calls within the S5000: the
S5000 automatically defines a static listener for external (unregistered) endpoints.
The embeddedService/Routes can be used to let H323 or SIP endpoints access to unregistered SIP
terminals in the same way than registered ones.

NOTE: Be sure to have set a valid domain
name or ip address for your S5000 to work
properly. (see chapter 5.3.2)

81 – S5000 Reference manual – 2.0-ed1

6.1.2. Proxy Server

The S5000 acts as a proxy server. It handles direct calls to the SIP or H323 parties directly.
When a registered user dials a SIP url (alias@domain), the server operates a search for the party.
Search is made as follow:
Search through the embeddedServices rules
 If no rules are found:
 stepB processing

– search amongst the registered SIP users within the S5000
– If the party is found (endpoint or route), then the call is directed to the party
– if the party is not found :

– search amongst the H323 registered endpoints (using the default domain)
– if the party is found, the call is directed to the H323 party
– if the party is not found :

– if the SIP domain is an IP address, then the call is given directly to the party IP.
– if the SIP domain is a host name, then a DNS search is operated on the S5000

– if found, the call is directed to the IP address found
– else, the call is rejected.
–

If a rule has been found, modify calling and called party as defined within the embedded service, then
process the target/route resolution as step B.

NOTE: Please consult the release notes for the list of the supported SIP terminals, features and APIs.

82 – S5000 Reference manual – 2.0-ed1

6.1.3. SIP/H323 Gateway

The S5000 acts as a SIP to H323 and H323 to SIP Gateway.
Endpoints from both protocols can register and call together.
Incoming H323 calls can be transformed into SIP calls and reverse.

Using a S5000 as a frontal SIP access enables H323 systems to be called from SIP terminals.

Fig.35 S5000 H323/SIP gateway engine

H323 to SIP call works as follow :

– search amongst the embedded services for the called number. A SIP redirect can be found at
this stage (usefull to reach unregistered SIP recipients) (see § 5.6 for embedded services)

– If no H323 party no SIP redirect has been found, then a search amongst SIP registered
endpoints is made
– if the SIP party is not found in registered terminals, a releaseComplete is returned to the

caller
– else Invite to the recipient and SIP/H323 signalling takes place

SIP to H323 call works as follow:

– search amongst the registered SIP endpoints or sip uri analysis to reach unregistered endpoints
– If no SIP party has been found, then a search amongst H323 registered endpoints is made

– if the H323 party is not found in registered terminals, a BYE is returned to the caller
– else Setup sent to the recipient and SIP/H323 signalling takes place

NOTE on media paths
Due to the very different signalling protocols, the S5000 SIP/H323 internal Gateway makes its best to
have the media flows going directly between the H323 and SIP endpoints in each conversation way.
While processing the call, some flows might go through the S5000 temporarily. Some SIP terminals
may not accept to have their media streams redirected at a point in call process and keep a channel
through the S5000.

83 – S5000 Reference manual – 2.0-ed1

6.2. Media Entities

The S5000 can embed a number of media resources without any need for an external media server.
The Media Entities are shared resources within the S5000 that allow to play (sound) files to endpoints
upon connection. This works in dial in calls as well as dial out calls.

6.2.1. What for?

A Media Entity is a convenient way to direct your callers to a specific announcement (dial in mode). It
can also be used to send some voice message to someone (dial out mode).
The S5000 can connect two media entities and thus connect two endpoints after some waiting
announcement.
Typical applications are:

 Voice answering machine (redirect the calls to a Media Entity whenever you're not available).

 Status message (coupled with an S5000 application, to terminate a special number dialin).

 Voice alert (coupled with an S5000 application, dial out a voice message to someone phone)

 Call Center (let's wait incoming calls and connect incoming numbers to local operators’ phones as
they are available: this can be done through the web browser or automatically with an S5000
application).

A Media Entity is associated with an alias, a file name, codec list and a loop mode.
The alias is the way to identify and route calls to it. The file name is the voice file to play to callers or
called. The loop defines if the Media Entity needs to play a number of times then releasing the call.
The codecs list defines the available audio codecs to be negotiated with parties. The associated files
must be present on disc at play time for the different negotiated codecs.

6.2.2. Usage

Simply define the number of simultaneous voice capabilities you need.
Note that your license rights may limit this number.
Configure Media Entities (see § 5.7.1).

In the Endpoints view (see § 5.4.1), your media entities appear as:

Dialin mode
Any user can call the Media Entity numbers (for example 911) and the associated voice/music
message will be played to him.

Dialout mode
With the Browser, one can make a dialout call by clicking “connectTo” link and choosing a recipient to
call (see below). All the available aliases (registered endpoints) are shown as well as a “free form”
number. This can be used to call through an external system: for example a PSTN number through a
gateway or a Cisco's Call Manager or an Alcatel iPBX.

84 – S5000 Reference manual – 2.0-ed1

Fig.36 S5000 Media Entity dial out choice

The media Entity dials the number. After ringing and connection, the dial out user hear the voice/music
message associated with the selected Media Entity.

Join calls
With a number of connected calls with the media entities channels, the S5000 allows you to bind any
of these calls through the web browser interface (see § 5.5.1) or with the S5000 API.

Two “half calls” are shown.
To connect them together, just select one on them join link.
A new window opens with the list of the other available Media Entities.
Choose one of them and validate.

Fig.37 S5000 Media Entity join choice

85 – S5000 Reference manual – 2.0-ed1

Immediately, the two “half calls” are joined and the users talk together. The Media Entity status is now
“JOINED” within the conferences display (§ Erreur ! Source du renvoi introuvable.).

Disjoin calls
As soon as calls are joined, a “play” link appears that allow restoring the initial state.
The half calls are no longer joined and the users listen again their announcements.

6.2.3. Limitations

The media entities can be connected to one endpoint at a time. You may declare as many Media
Entity as you need (your license rights can limit this).
The supported files formats are:

 G711 Alaw 30 ms

 G723.1 30 ms

 G729 20 ms

6.2.4. Use with application programming interface

The S5000 API allows to handle Media Entity in numbers to build professional services such as:

 Conference server, connecting 3 or more Media Entities and performing RTP mixing

 Call Center, handling a number of waiting calls and internal -operators- calls to be joined

 Voice mail, to redirect a caller to a voice message then taking the recorded file and having it
emailed to the recipient

 Protocol or network gateway, to use media Entity as media switch between different network
types

 Etc…

86 – S5000 Reference manual – 2.0-ed1

6.3. Media Termination Points (MTP)

The S5000 is a softswitch which routes signaling flows (H225, H245, SIP). The S5000 can also route
media (RTP) flows.
This feature is more than useful for operators who want mask their customers IP addresses or used
for enterprises extended services such as Hold, Transfers, call parks, etc….

The following figure shows 2 MTP modules managed by a centralized S5000:

 A local MTP (near the S5000),

 A remote MTP.
In this example, a call between 2 users within the same area use the remote MTP (also within the
same area). But a call between 2 separated areas use the local MTP.
Thus bandwidth is optimized over Wan links.

Some rules must be configured to associate an MTP (or not) to a call. They are based on source and
destination patterns.

Fig.38 S5000 Media Termination Points overview

The S5000 opens a TCP control connection with every defined MTP and sends the commands to
open and close RTP channels with associated UDP ports, over this connection.

When an MTP is defined within the configuration (see § 5.7.2), the TCP control connection is
attempted from S5000 toward MTP.
If this connection is established, the status green LED lights and the number of available channels is
displayed. Otherwise the LED is off.

In this example the “mtp0” MTP is connected and the “Paris” MTP is not.

Local MTP provides 10 RTP channels. When a call uses an MTP, 2 channels are busy for it, one for
each remote endpoint. Thus 10 channels allow for 5 simultaneous calls.

87 – S5000 Reference manual – 2.0-ed1

Each channel uses 2 UDP ports: one (even value) for RTP and the next one (odd value) for RTCP.
Thus in the previous example Paris will be able to bind UDP ports from 28000 until 28019.

Note: When the MTP runs within the same server as S5000, the IP ADDRESS parameter must be the
real network IP address and not the loopback address 127.0.0.1.

When remote endpoints within a private network are registered on S5000 within a public network
(Internet IP address), the Automatic NAT feature (see § 6.4) will modify the addresses fields into the
packets. In the particular case of remote MTP within the private network (as shown in following figure)
the automatic NAT must be disabled on MTP to keep the private IP addresses within RTP packets. In
this case the NAT allowed parameter must be set to NO in the MTP configuration (see § 5.7.2).

The MTP Rules allows defining in which case a call must use an MTP for media, and which one.
These rules are based on source and destination patterns.

In this example, when a call matches destination 00* (for any source), the Local MTP is selected,
when a call matches source 40* AND destination 40*, the Paris MTP is selected. In other cases no
MTP is selected and media is directly exchanged between endpoints (no hold / transfers…).

Optionally:

- MTP also generates in band DTMF from out of band signals (SIP INFO, RFC2833)
- MTP can operate a crypt/decrypt operation on RTP flows (RFC3711 SRTP)

Private network Public network

MTP

NAT allowed

Media

MTP NAT not allowed

Private network Public network

MTP

NAT allowed

Media

MTP NAT not allowed

88 – S5000 Reference manual – 2.0-ed1

6.4. Automatic NAT handling

When working with endpoints behind a NAT system – which is a standard mode for residential
telephony with subscribers behind a home firewall/router- common problems arise from a
private/public mismatch addresses.

Users behind a NAT router, assign a private address (example is 192.168.0.a.b) to their terminal or
terminals. Especially if they share an IP address amongst various computers.
Simply registering a terminal to an external publicly known S5000 could be difficult as the H323 or SIP
information messages that go out of the terminal shows the private IP address.

The S5000 has the ability to automatically detect if a registering terminal is behind a NAT and handle
these accordingly to have signalling and media flows going back to the right addresses and ports.

Hence, there is no need of special Router configuration nor special NAT capable terminals to be
registered and dialling out calls.
For receiving incoming calls, the residential subscriber has to use DMZ or port forwarding to direct
incoming SETUP or INVITE to its terminals or use the S5000 freeVPN solution to handle more than
one local endpoint.

Fig.39 S5000 Automatic NAT configuration case

89 – S5000 Reference manual – 2.0-ed1

6.5. Inter-site trough Internet (No VPN solution)

The S5000 allows for effortless inter connection of multiple sites with IP telephony, even when no VPN
are available.

Simply install an S5000 in every site, interconnect them through public or private IP links and set a
simple configuration. All users can now talk to each other.

The system is called M2MFreeVPN and enables inter site configuration even when no VPN is set or
available.

Fig.40 S5000 Automatic 1 public to N private configuration handling (free VPN)

90 – S5000 Reference manual – 2.0-ed1

6.5.1. Routing configuration

The following is considered on Site B which must know the routes to reach 0* destinations (Site A) and
5* destinations (Site C).
Create 2 Static Entities (mode OUT) to consider remote S5000 as endpoints, with M2MFreeVPN
feature (NAT + RTP translator):

Fig.41 Static entities configuration for a private site connected to public internet (outgoing calls handling)

91 – S5000 Reference manual – 2.0-ed1

Create 2 Embedded Services which forward calls to the remote S5000:

6.5.2. Definition of global listener for external sites

The following is considered on Site B which must accept incoming calls from Site A and Site C.
Create 1 Static Entity (mode IN) to enable incoming H225 connections (i.e. port 1720). One can filter
the remote IP addresses:

Fig.42 Static entities configuration for a private site connected to public internet (incoming call handling)

92 – S5000 Reference manual – 2.0-ed1

6.5.3. Router/Firewall settings

In order for the system to work you must set some internal NAT/PAT rules on your internet connected
router.
IP NAT for the outgoing packets must also be set within the router.

The used TCP and UDP ports are configured within General Parameters (see § 5.3.1).

Fig.43 Cross over firewall S5000

On Router configure:
External TCP 1720-1720 Internal TCP 192.168.0.4
External TCP 10000-14999 Internal TCP 192.168.0.4
External UDP 10000-14999 Internal UDP 192.168.0.4

NAT:
TCP 1720 and 10000-14999
UDP 10000-14999

93 – S5000 Reference manual – 2.0-ed1

6.6. Endpoints registration control

It could be useful for security reasons to select which endpoints are able to register the system.
This control from the S5000 embedded services is available for all H323 and SIP terminals.

The RREJECT and RACCEPT type embedded services are used for that matter.

6.6.1. Reject a set of endpoints

To reject a set of endpoints with some specific alias or aliases range, just add an embedded service of
type=RREJECT with Destination mask=<alias pattern>.

Whenever the mask matches, the terminal registration is rejected by the S5000.
An enhanced precision can be achieved on the productId information. One can reject selected
terminals belonging from a specified product Identification, for example, 'Microsoft Netmeeting' or
'Hinet LP 5100'.
To specify that only special productId must be rejected, specify 'vendor' value within the Destination
mask parameter and the productId string within the New Calling Number parameter.

Fig.44 Registration control (open/closed modes)

6.6.2. Accept a set of endpoints

To accept only a set of endpoints with some specific alias or aliases range, just add an embedded
service of type RACCEPT with mask= Destination mask=<alias pattern>.

Beware of the rules order! The first match wins.
Note: Default mode is a S5000 in open mode, all endpoints can register.

In the following example terminals matching aliases 51* are accepted, all the other are rejected:

Fig.45 Registration control (open/closed modes) with some endpoints to accept

94 – S5000 Reference manual – 2.0-ed1

6.7. Advanced Routing

Every call request entering the S5000 from either protocol is controlled based on different rules.

6.7.1. The simple way

By definition, the simple case is calls between registered endpoints, dialled and dialling numbers are
known.
There is no need for special rules or processing, the S5000 has the knowledge of the parties and
knows how to route calls between them.
The S5000 maintains permanently the IP address to join registered endpoints even behind a
NAT/Router.

Example:
Let’s defines two IP telephones (SIP or H323) with user number 100 and 200.
These phones are shown within the S5000 Web interface on endpoint view.

When 100 dials 200, the 200’endpoints will ring and connect.

6.7.2. The advanced way

The simple point to point call between registered endpoint is not always suitable, for enterprise or
carrier services, more complex routing rules must be handled.

The routing can be processed by Embedded Services, by external Application, and also both.

An Embedded Service can be used to forward a call to a single destination (Target), or to a Route
which can try several destinations in cases of busy, noAnswer, unavailable destination, etc…

A call select an Embedded Service according Source AND/OR destination patterns.

An Embedded Service can be used to only modify digits within source and/or destination addresses
without fixing target recipient.

Example 1: (Embedded Service for digit modifications)
When destination matches 1234*, the 2 first digits must be removed from calling number and prefix 33
added (without change target):

Example 2: (Embedded Service forwarding call to single target)
When source matches 5*, the call is to be forwarded to 5150 (registered SIP or H323 endpoint):

95 – S5000 Reference manual – 2.0-ed1

Example 3: (Embedded Service forwarding call toward a route + Route + Trunks)
When the Direct Inward Dial (DID) extension matches 4000, the call is to be forwarded to 3 internal
users (4001, 4002, 4003) in rotary group mode (Call Center model). If no user is available (busy / no
answer / not registered) the call must be forwarded to the voice messaging 4004:

Embedded Service

Route

Trunks

Example 4: (Embedded Service forwarding call toward an application only)
When destination matches 6000, the call is to be forwarded to application the named “myApp”:

Example 5: (Embedded Service forwarding call toward an application and then to a Route)
When destination matches 70*, the call is to be forwarded to the application named “myCDR”, and
then to the Route named “CallCenter”.

96 – S5000 Reference manual – 2.0-ed1

Example 6: (Embedded Service forwarding call to a MultiRinging group of phones, then on no
answer terminates the call onto a messaging system)
When the Direct Inward Dial (DID) extension matches 4000, the call is to be forwarded to
(TRUNK_MR) 3 internal users (4001, 4002, 4003) in MULTIRING group mode: all three phones will
ring simultaneously.
The first user to pick up automatically is connected and the other phones stop ringing.
If no user is available (busy / no answer after the MULTIRING timeout specified/ not registered) the
call must be forwarded to the voice messaging 5000 (Trunk Messaging_M5000):

Embedded Service

Route

Trunks

97 – S5000 Reference manual – 2.0-ed1

6.7.3. Routing according to CODECs

The S5000 allows to route calls according to calling, called, sip account and optionally audio codecs.
Depending on the presence of some codecs, the call can be routed to a specific destination, -for
example a carrier that does accept only G729- or another –to a carrier that works in G71A only-.
This is an hieved by using EmbeddedService, ROUTE and TRUNK definition for your routing.

In the previous example, one defined two embedded services, one to direct calls that have at least
G729 codec towards a G729 termination; the other embedded service direct calls that have at least
G723.1 codec to another termination. This avoid codec transcoding and allow calls to establish end to
end within the right codec.

6.7.4. Routing according to DNS (SRV, NAPTR, ENUM)

a) Principles

Amongst the many routing scheme that support the S5000 (based on registered aliases, prefixes,
suffixes, number patterns, codecs, fixed selection of multi destinations, etc.), the S5000 allows, for SIP
calls, to use a ‘to’ domain analysis through DNS search.
When above described searches failed or if explicitly requested, the S5000 will try to find a SIP proxy
server that can handled a recipient merely known as a phone number and a domain name.

This DNS search scheme makes use of SRV and NAPTR DNS entries as defined by RFC3262.

SRV records allow an organization to set a SIP proxy server IP address to handle calls to this
organization.
Example: 7868@myco.com.
The direct DNS request (A record) for myco.com gives 193.6.7.8. : this may not be the best and
appropriate address to send the INVITE _

mailto:7868@myco.com

98 – S5000 Reference manual – 2.0-ed1

SRV DNS request for udp.sip type gives 193.67.7.250 and port 5062: this is better and this is tagged
as a SIP server for this organization.

NAPTR records allow to list entries associated with E164 phone numbers.
 Here we no longer make use of the recipient domain but the phone number.
Example: 7868@myco.com.
NAPTR DNS search for type : 8.6.8.7.e164.arpa (Nate the phone number digits reversal) gives :
sip:johndoe@romaniatel.ro
This is a URI for the user and that can be totally different from the original ‘to’ URI of the original call.
The recipient 7868@myco.com (example) can then be contacted at this URI
sip:jondoe@romaniatel.ro.
A DNS search for SRV record or A record is to be made from that point.

It exists several E164 databases in the world.
e164.arpa, freenum.org, etc.
According to the search domain, this will be added as suffix for the search.
A failed search for 8.6.7.e164.arpa can be successful for 8.6.7.freenum.org.

b) Use
The DNS search is naturally done within the S5000 when, after passing all routing procedures
(registered set, embedded services, application), the recipient is not known and no IP exists to
propagate the call furthermore.
If the recipient domain is a domain name, the SRV DNS search is done, then if failure to get a SIP
server IP, a A DNS search.
The DNS SRV (then DNS A) search is the “last chance” search.

The NAPTR search for E164 phone numbers (also called “ENUM” mode) enters in the global routing
scheme of the S5000.
E164 database searches are to be prepared through StaticEntities “OUT” and enters within an
“Embedded Services” routing plan that can mix several searches with backups: search thru e164.arpa
then within freenum.org then myprivatenum.com, etc.

Fig. StaticEntities with DNS ENUM entries PRV1 and PRV2

The IP address for the StaticEntity OUT must be set as follow:
sip:enum:<base suffix> (example: sip :enum :e164.arpa)
(see Static Entity parametering chapter)

mailto:7868@myco.com
mailto:johndoe@romaniatel.ro
mailto:7868@myco.com

99 – S5000 Reference manual – 2.0-ed1

6.8. Resilient solution

A S5000 solution can be resilient from two standards mechanisms:

 alternate gatekeeper mode (H323)

 automatic discovery of H323 gatekeeper/SIP Call Agent

NOTE:
A specific very high capacity S5000 design is available on request (option).

6.8.1. Alternate Gatekeeper

The S5000 allows for advertising of an alternate Gatekeeper (a second S5000 for example) in reply to
endpoints registrations.
With this feature, if supported by the terminal, the endpoint will automatically redirect its signalling
towards the alternate Gatekeeper as soon as it detects a failure on the main S5000.

Fig.46 Alternate Gatekeeper design

6.8.2. Automatic discovery

In this mode, the endpoints have the ability to send their registration requests in multicast mode.
H323/GRQ messages are advertised amongst the local network.
SIP/REGISTER messages are advertised amongst the local network.

If multiples S5000 are active, the one that have the multicast flag on (-t multicast start option set) will
accept the endpoint registration.
When all endpoints are registered, a second/backup S5000 can be started with this very flag multicast
set. In case of failure of the first server, all endpoints will automatically re-register with the new S5000.
This process is a transparent mechanism from the user point of view.

100 – S5000 Reference manual – 2.0-ed1

Fig.47 Automatic discovery design

6.8.3. S5000 Groups

This feature is under license option.
The S5000 Groups is an automatic resilient mechanism based on the automatic discovery feature of
H323 and SIP.
The Groups mechanism can work with or without Cluster and Database options (see farther).
The S5000 Groups mechanism allows for:

 automatically secure a gatekeeper/call agent with one or more backups

 automatically add new backups servers

 automatically swap to backup servers then to nominal server

 have all servers started at the same time

The S5000 Groups contains any number of S5000.
Any number of Groups can be active at the same time, on the same network.

Each S5000 in a group automatically discovers its adjacent ones.
It works on a master/slave mode. Every S5000 in a group as a different id, the highest id defines the
master S5000.
Only the master registers the endpoints.
Slaves only wait to be master.
At any time, a slave can become the new master. A new master,
in case of failure of the current master, is elected amongst the
slaves, from the highest id left.
All the process is dynamic and every S5000 in a group
permanently listens to each other’s.

Tasks:
Configure Groups parameters as
described in General Parameters § 5.3.5.

 Set an Id for the S5000 member.

 Set the channel as group Id.

 Define the timer polling.

 Select interface by IP for listen other members.

Automatically, every S5000 discover its neighbours.

101 – S5000 Reference manual – 2.0-ed1

Fig.48 Group of S5000 resilience design

Groups - Cluster Option :

This option allows to set a virtual IP address for the group to be dynamically assigned to the S5000
elected master. Thus the endpoints will register using this virtual IP regardless of the active server.
Each s5000 cluster member has
- a first Ethernet interface (eth0) used for VoIP (SIP/H323) protocol exchanges with:

- a physical IP address (ex: 192.168.0.172 / 24)
- a virtual IP address in the same subnet that physical one (ex: 192.168.0.174 / 24)

- a second Ethernet interface (eth1) used for groups polling control and license with a physical IP
address in another subnet (ex: 192.168.1.172 / 24).

Network
RAS

RAS

Q931

H245

A B C

Principle shown for H323. This is also valid for SIP Registrar.

Polling/UDP

W
h
e
n

fa
ilu

re
o
f
A

Sees:

-B is new master

-A is in failure

Id=3 Id=2 Id=1

Multicast grouping of S5000

Multiples groups of any number of S5000

can be active at the same time.

S5K GROUP

SIP

102 – S5000 Reference manual – 2.0-ed1

Groups - Database Option:

This option allows to manage a unique configuration for the cluster (instead 1 configuration per each
s5000).
The primary node (initially master) works as a “Publisher” database, the secondary nodes run as
“Subscriber” databases. Only publisher node replicates the configuration to the publisher nodes.
The database option allows also to replicate registered endpoints. Thus when the primary node goes
down, the next secondary node became master get immediately the endpoints contexts to be able to
route call to them.

6.8.4. Automatic restart with jWatchdog

The S5000 can be delivered with a companion product named JWatchdog.
JWatchdog monitors the S5000 program periodically. When S5000 has a failure and does not run
anymore, JWatchdog restarts it to ensure non-stop service
JWatchdog can be found in the <add-on> directory of your official installation CD-ROM.

Fig.49 Watchdog design

103 – S5000 Reference manual – 2.0-ed1

JWatchdog can monitor multiple M2MSoft programs, products and even customer handmade
applications based on M2MSoft API.

JWatchdog is to be installed on the same host than your products and applications to be monitored.

JWatchdog needs a Java Virtual Machine runner to execute.
All parametering are done within a jwdog.ini file.

How to start JWatchdog

jWatchdog is delivered with:

 jwdog1.0.jar

 jwdogstart.sh, Linux starter

 jwdogstart.bat, Microsoft Windows started

 wdog.ini sample

Customize your starter script with CLASSPATH parameter and java runtime path.

Configure your wdog.ini file with:

 what application you want to monitor

 what is your scanning period per application

 what is the startup command line per application

wdog.ini file is built as follow:

Block Parameters Description

[Application]
(multiple)

 name

Name (user free string) of the application to monitor.
Example: name=s5000

 args Startup line to restart the application when it does not respond to
network polling.
Example: args=sh ./s5kstart.sh

 period Time in second between polling
Example: period=30 (stands for 30 seconds)

 port IP address : tcp port to connect periodically.
Important: jwdog monitors exclusively TCP ports on the same host.
Example: port=192.168.0.9:8000

Wdog.ini example

[Application]
name=s5000
args=sh ./s5kstart.sh
period=10
port=192.168.0.2:8000
[Application]
name=userApp
args=sh ./startAPP.sh
period=2
port=192.168.0.2:9000

104 – S5000 Reference manual – 2.0-ed1

6.9. RSVP service

As an option the S5000 can handle standard RSVP resource reservations for the calls going through a
routers cloud.

RSVP can be used in an automatic way through the StaticEntities elements (see § 5.4.5), allowing for
any non-capable RSVP endpoint to benefit of RSVP through the S5000 and allowing a complete point
to point reservation for RSVP capable endpoints.

To activate the RSVP, first choose a link between two S5000 and declare a static entity to reach each
other.
Select RSVP mode on these StaticEntities and the different parameters necessary for the selected
QoS:

 RSVP refresh period (in ms)

 RSVP Reservation Style (Fixed Filter , Wildcard Filter or Shared Explicit) (*)

 RSVP Bucket parameters (Token size and rate and Peak data rate)

 RSVP RSpec parameters (Guaranteed rate)

The reader must have minimal information about RSVP mechanisms (RFC2205 compliant) to make a
correct use of these parameters.

(*) Only Fixed Filter style allows for distinct resource reservation per flow, per call. Other styles “share”
the resource and could not be suitable for most applications.

Fig.50 RSVP service design

Every call, originated or terminated within a StaticEntity with RSVP option activated will be applied
RSVP messages exchanges for every voice/video flow in the call.
When only one party supports RSVP, the call is not affected by the RSVP mechanism as it cannot be
set if not both parties are RSVP capable.
When both parties support RSVP, the call is automatically released whenever a reservation error
occurs. At any moment in the call, .a reservation can be cleared by any router by a lack of resource of
reservation pre-emption. (RSVP PathErr or ResvErr messages). This causes automatically the call to
be released by the S5000.

The S5000 automatically refreshes the path according to the refresh period set. (Time Values
parameter)

IPRSVP

« Path »

RSVP Messages

RTP Media

Reserved

path for voice

or video

IP Phone

IP Phone

105 – S5000 Reference manual – 2.0-ed1

6.10. Secured calls with Transport Layer Security

NOTE: this chapter is not a cryptography manual and the interested reader must access to the rich
information available on internet to emphasize its knowledge about X509, asymmetric and symmetric
keys.

The S5000 embeds a TLS (Transport Layer Security) layer compliant with TLS1.0 (RFC 2243).
TLS applies on TCP links and establish a handshake and challenge between parties before the
exchange of signed and encrypted application data can be done.

TLS is optionally used:

- for VoIP calls
- for secured HTTP (HTTPS) access to the system.

6.10.1. Certificate and private key needed

In order for the encrypted connections to be done, the S5000 will send a certificate to its parties.
This certificate is an X509v3 compliant file (asn1 format with .DER extension) that contains the S5000
server public key. This will be used by the client to crypt his data to the S5000.
In order to process the handshake with its parties the S5000 needs also a private key file in PKCS#8
format. This will be used by the S5000 to decrypt the received data.

Fig.51 S5000 TLS principle overview

The certificate and the private key are the two PKI elements needed to parameter the TLS layer within
the S5000.

Certificates and keys files must be installed in: <installation_directory>/cert

106 – S5000 Reference manual – 2.0-ed1

6.10.2. Configure Security parameters

The General Parameters (§ 5.3.7) enables the security parameters to be set.
These are:

 The S5000 certificate: you may obtain/generate a X509v3 asn1 DER certificate file.

 The s5000 private key file, in PKCS#8 format, asn1 DER.

Certificates and keys files must be installed in: <installation_directory>/cert

The S5000 certificate must be signed by a CA (Trusted Certificate Authority) trusted by the TLS client.
Several companies (Verisign, etc.) offer CA signed certificates and these are trusted by default within
the TLS client phones or internet browsers, but you may simply start with a self-signed certificate. This
implies that you generate:

 a CA certificate (you are your own trusted CA) ; this one may be installed once on your TLS
clients phones for them to accept any S5000 certificates

 a S5000 certificate signed from the previous CA

 a S5000 private key

NOTE: openssl (http://www.openssl.org/) is one tool to generate a self-signed certificate and private
key files.

Fig.52 S5000 TLS keys files parametering

Once an endpoint has registered with TLS, it appears with a small key icon as shown below (in
Endpoints page):

TLS calls are performed on TCP packets and content is totally opaque to eyedroppers.

107 – S5000 Reference manual – 2.0-ed1

a) Auto Generate your S5000 certificates files with

openssl and HTTPS access

The following tutorial is based on the openssl version 0.9.8g. The reader may adapt this tutorial to its
own openssl version.
NOTE: you may generate the following files on another system that the S5000 platform.

1. Defines/creates your CA Certificate Authority. This will be YOUR ADMINistrator certificate and
will be necessary to create all other certificates for any web sites.
1. Creates a directory

1. mkdir myCA
2. cd myCA

2. Generate an RSA private key of 1024 bits length
1. openssl genrsa –out myca.key 1024

3. Generate a CA certificate (Certificate Signing) self signed, for 5 years (aka 1825 days)

1. openssl req -new -x509 -days 1825 -key myca.key -out

myca.crt

2. Answer: (example)

1. Country Name : FR
2. State or Province Name : MidiPyrenees
3. Locality Name (City): Montrabe
4. Organization Name : M2MSOFT
5. Organizational Unit: Research
6. Common Name (your name): Bosqued
7. Email : support@m2msoft.com

myca.crt (X509 format) file is built.

2. Create your server certificate

1. Generate an RSA private key of 1024 bits length
1. openssl genrsa –out mys5k.key 1024

2. Generate a certificate (Certificate Signing Request) for the S5000 site for 2 years. (aka

730 days) . Produces a .csr.
1. openssl req –new -key mys5k.key -out mys5k.csr

3. Sign the certificate with your CA key. DER binary format file is needed at end.
1. openssl x509 -req -days 730 -in mys5k.csr -CA myca.crt -

CAkey myca.key -set_serial 01 –outform DER -out

s5k_cert.der

When/if prompted for password: just press enter (leave blank).

4. This private key file is not in PKCS#N format.
Generate a PKCS#8 format private key file (for the S5000), as DER binary file.

openssl pkcs8 –topk8 –nocrypt –outform DER -in mys5k.key

-out s5kreqpkcs8.der

Now, just load the s5k_cert.DER and s5kreqpkcs8.DER files into the S5000. Then connect through
HTTPS.

mailto:support@m2msoft.com

108 – S5000 Reference manual – 2.0-ed1

6.11. T120 Proxification

This feature is mainly used within H323 architectures.
Media proxification is often needed as an IP masquerade for external servers. Data proxification meets
the same needs and T120 is a widely used recommendation (last revision from jan 2007) for data
communication on multimedia conferences (ITU –T 121 to 127).
Microsoft Netmeeting is the major reference implementation.
The reader may refer to these recommendations for further interest.

Voice and video proxification is achieved through the MTP (Media Termination Point) module. T120
proxification is done through the S5000 itself.
T120 proxification is selected within the General parameters tab of the S5000 web interface and is
enabled or disabled for all T120 flows. (See General Parameters chapter and T120 enabled field)

S5000 acts upon dynamic detection and analysis of H245 capabilities and actual T120 requests to
offer a multi channels (TCP based) T120 relay.

NOTE: The TCP ports pool is used, as specified within General Parameters tab.

Fig.53 T120 channels proxification view.

SETUP

Phone is answered

A B

SETUP

T120Translator

H323
H323

End to end T120 link ok

H245 exchanges with Audio, Video and T120-Data types

CONNECTCONNECT

T120 connect

(TCP)(channel 1)
T120 connect

(TCP)(channel 1)

OpenLogicalChannelConfirmOpenLogicalChannelConfirm

T120Translator

T120 data T120 data

T120 connect

(TCP)(channel 2) T120 connect

(TCP)(channel 2)
T120 data T120 data

N-Channels T120 data

Control Channel

Data Channel

Application sharing channel

Chat Data channel

etc

109 – S5000 Reference manual – 2.0-ed1

6.12. IPBX mode

The S5000 embeds enterprise telephony functions, most of what is expected to be found on plain old
PABX systems. The S5000 must be set into iPBX mode (see General Parameters) for the following.

IPBX Features

These features include:
- internal and external calls
- internal calls on short numbers
- call forwards
- call transfers
- call pickup and intercept
- 3 parties conferences
- call filtering (“patron/secretaire”)
- multiples lines handling (up to 9 per basic telephone, and much more on advanced phones)
- call hold/retrieve
- call select
- lines supervision on selected switchboard phones (BLF Busy Lamp Field feature)
- management of external Ip Phones through internet line, even located within private

networks
- special “forward” conditions (“closed offices”, etc.) can be shown on BLF (Busy Lamp

Field) of IP telephone
- Call Waiting Indicator (as a “beep” sound while in a call)
- Etc.

The S5000 in iPBX mode can be used with PSTN Gateways (SIP or H323) to offer a complete IP-PBX
system.

The S5000 Enterprise is an M2Msoft integrated HW and SW with
 all the enterprise features and PSTN connections.
Ask our sales representatives for information.

110 – S5000 Reference manual – 2.0-ed1

Fig.54 S5000 iPBX within the enterprise

The above figure depicts a typical S5000 with iPBX functions use case.
The company simply needs some IP Phones, a PSTN gateway and an S5000 to handle its telephony
for employees and customers calls.

The iPBX services are available on IP Phones that handle:

- DTMF using RFC2833 or SIP INFO or H323 UII (for Virtual lines feature)
- (optionally) Hold/Retrieve and Xfer through SIP ReInvite and REFER requests

Supervision line and call intercept

On capable phones, the S5000 iPBX can monitor users/phones status and pilot phone led (Busy
Lamp).
This can be useful for a switchboard position to look at people busy states as well as for call intercept:

- simply pressing the corresponding light on (Busy Lamp) performs call intercept on the ringing
call on the ringing phone

Calls transfers and multi lines

Pick up a call, put it on hold, then dial a new call to B, then transfer the call with some simple dtmf
sequence or simply hang up: as soon as B pick the call, it is transferred.
Situation as simple as that one are naturally managed within the S5000 and ease the enterprise
telephony deployment.
Any number of concurrent calls can virtually being held from a single phone.
Simply go and tabulate thru the calls:

- either from your phone function keys (advanced phones)
- either by pressing #1(call one), #2 (call two), etc.

Announcements

Several voice/music prompts are used in iPBX mode.
Music on hold (server generated), pre-connect announcement, etc. and are fully customizable (see
Recorder function chapter) thru G711 files.

111 – S5000 Reference manual – 2.0-ed1

Closed offices management and PBX Rules

A number of redirect rules can be set within dates, and hours or simply activated/deactivated on
demand.
This can be used to advertise a closed office message for example, on evenings and week ends.
This can also be used to transfer a complete switchboard to an alternate location for example.
Every rule can be activated/deactivated using an internal IVR.

Tasks to set up an S5000 Enterprise environment

We assume here you have your S5000 installed and set up onto your company LAN (i.e. IP fixed
private address for example).

1/ Be sure to have “iPBX generic” mode activated.
Go into General Parameter page and check “iPBX generic” checkbox is checked.

2/ Be sure your SIP domain is set to the actual IP address of the S5000 (eiher private here or
public IP if S5000 is directly in internet)
Go to General Parameter page, and

check SIP view, with SIP domain
check SIP UDP listener at least is selected

3/ Be sure you are working with MTP
Go into Media page and check Media Termination Point to see an MTP server set and a light on for an
MTP server.
If not, please declare a new MTP and check you have ‘mtp’ application running on your host or any
remote host.
Go to MTP Rules and check there is a rule for all calls.

4/ Define and set the different services codes: hold, transfer, intercept, etc.
Go into iPBX Functions page and set the codes within the page.

(see IPBX page chapter)

112 – S5000 Reference manual – 2.0-ed1

5 to 8/ It is time to configure your local phones if any
Enter them an alias and user name, the IP Address of the S5000 as REGISTRAR and SIP Proxy, with
port 5060.
Select the IP Phone into DTMF Mode SIP INFO or RFC2833.
Select the IP Phone codec as G711A, 20 ms preferred packet size
How to configure this depends on your phones.
Virtually all SIP with DTMF capable phone are suitable but the S5000 Enterprise is fully
validated with THOMSON ST2030 IP Phones. Special parameterization documentation is
available for these phones upon request.

Check within S5000 Endpoint page that you “see” all your phones: you are up and running.

If you have external IP Phones on remote private or public site, it is all within the next chapter.

Tasks to set up remote private IP Phone to enterprise S5000 Enterprise
environment

We assume here you have your S5000 installed within your offices and set up onto your company
LAN (i.e. IP fixed private address for example). Your offices are connected to public internet thru a
router and a public address.

To start, the S5000 domain as seen from the remote phone will not be the same as the one shown
within the local phones: your S5000 is here running a private domain (i.e. its local private IP address).
Then the external phones will need some NATting to dialog with the local company phones.
Let’s see all this.

113 – S5000 Reference manual – 2.0-ed1

1/ Allow S5000 to accept other domains than itself
Go into General Parameter/SIP page and check “No Strict Domain Control” checkbox is checked.
This allows external phone REGISTER request that contains URI with offices public addresses to be
accepted.

2/ Defines an EP profile for the new external phone with NAT
Go to Endpoints/Endpoints Profile page, and

Create or modify if it exists, the new phone profile
Add a NAT field with the public address (as shown from the remote IP Phone)
This will force all SIP requests coming from the S5000 to this remote phone to have rewritten
addresses on some headers and fields (SDP, Contact, top VIA, From, To, particularly)

3/ NAT ports into the enterprise router
It is necessary to route external ports here such as:
5060 UDP: this will be the main entrance for the REGISTRATION of remote endpoints.
28000-28099 UDP: these are the default UDP RTP range as advertised by the MTP to get the media
flow from the external phones to go to MTP

4/ Within the remote Phone, set it to register to the Enterprise S5000
Define the REGISTRAR and PROXY with the public Enterprise address

5/ NAT ports into the remote site router
It is necessary to route some ports here such as:
5060 UDP to the IP Phone (in case several IP Phone are used, use different ports here, 5070, 5080,
etc.)
<ip phone media port> UDP: the RTP port as advertised by the IP Phone must be directed to the
Phone. (consult the telephone manual for this) It can usually be fixed within the phone.

6.12.1. Virtual lines: 1 call, N lines
The S5000 can use a unique feature to handle multiple communication lines through a low bandwidth
network or one line limited endpoints.
This mode is dedicated to work in IPBX mode. Define a set of endpoints to have a limited number of
lines: this enable the virtual lines mode for the endpoints (this is defined through the StaticEntity
listener that will force all registered endpoints through him to get the feature). This endpoint will
receive only one physical call and will be able to manager several calls within this single physical link
by use exclusively of DTMF codes.

The virtual line is a complete system with CWI Call Waiting Indication, line tabulation, auto display ‘on
screen’ updates (after a line tabulation of transfer, one needs to “se” the remote party name/number),
error messages (when the maximum number of lines is reached), conferences. The application can
take complete control over the system and set/reset special SIP parameters:

- Displays (from/to)
- Priority
- GenericParams
- Accept/reject hold
- Accept/reject conference creation
- Accept/reject conference addition
- Accept/reject transfer

2 virtual lines on 1 physical call.

114 – S5000 Reference manual – 2.0-ed1

6.13. Short Message Service
The S5000 handles the SMS as defined by RFC3428 (SIP).
SMS can be issued from a SIP trunk, a registered endpoint, a non-registered entity. The same routing
process is performed as defined for the calls: embeddedServices, registered table.
An SMS can be routed and transmitted from and to endpoints in a call or out of a call.
The routing table is used when the call is not yet established. Once the call is established, the SMS is
transmitted on the same path as the original call set up.

115 – S5000 Reference manual – 2.0-ed1

7. Application Programming Interfaces

This chapter introduces first the M2M-S5000 API concepts, and then API commands and events
references for each of Java and C languages.

7.1. S5000 API concepts

Although the M2M-S5000 has been designed in order to enable a large range of functions directly
from a set of configurable « embedded services », real world complex applications and specially user
applications may possibly not be directly rendered.
M2M-S5000 has its core functions extended to one or more user external applications: Applications
that can even run on a bunch of other platforms.

How to only allow a set of phones to place calls?
How to I dynamically route calls from database rules?
How to design specific signaling and media gateways?
The GKXAPI (Application Programming Interface) is the way to do so.
The GKXAPI is a set of libraries that users use to develop new code that takes control of calls, routes
or terminates calls.
The GKXAPI is connected to the M2M-S5000 product.

S5000 API is called GKXAPI and it exists on two flavors:

 JAVA API: the JGKXAPI

 C/C++ API: the GKXAPI

Fig.55 S5000, an IP services application server

116 – S5000 Reference manual – 2.0-ed1

The previous figure shows a typical use of GKXAPI with a set of applications that handle calls from
various sources: terminals, video terminals, gateways, other gatekeepers, call agents, etc…
All applications are connected by means if TCP-IP with the M2M-S5000.

Routing to applications benefits of the S5000 embedded services features.
The embedded services table manages the call routing to selected applications or anywhere else
based on these rules.
EmbeddedServices rules are processed in order and a stopped (not connected) application leads to
the next matching rule application.

Here are the main features offered by GKXAPI / JGKXAPI:

 TCP-IP connection (same host or remote)

 Distributed applications allowed

 Any number of application connected to a M2M-S5000

 multi-threaded application: handle multiple sessions/slots at a time with a single-binary

 Multi-platform Java API

 Requests/Response and Indications protocol

 Ability to send unsolicited commands

 Endpoints Events handling : (protocol agnostic H323 or SIP) RRQ, ARQ, SETUP, ALERTING,
CONNECT, RELEASE and H245 OLC/OLCAck, RSVP, etc.

 Routing based on embedded services

 Routing of events and calls can be done externally, independently of the application

 Graphical monitoring of call connected per application, per session/slot

 GKXAPI / JGKXAPI is an asynchronous API

7.1.1. Use cases: Control and Interfere call processing

One purpose, may be the main purpose of the API, is to interfere on calls processing by inspecting,
controlling and modifying the routing of the call or of the terminals signaling or media.
All call control and routing applications family enter this use case.
The application does not need a call termination, this is done within an external unit.
The application deals with tracking selected signaling events, rejecting some, accepting others, with or
without modifications.

Fig.56 S5000 applications call controls principles

117 – S5000 Reference manual – 2.0-ed1

7.1.2. Use cases: Terminate calls with media (standard)

Direct handling of calls, call connection/termination within the S5000 and actions while the call is
running, acting on media itself, DTMF control and voice services: all these needs fit within an other
applications family and the GKXAPI provides a set of conceptual objects/entities, to connect calls with
or without media, dial out calls, reconnect calls, etc.
These applications use Media Entities super object and/or SIPProxy entities and work on call legs
rather than user to user calls.
The figure below shows a call directed to an internal Media Entity. The caller is connected with a file
playing (G7xx codec) and the application can then disconnect the call, change the play file, connect
the call to another call: join!.
The Media Entity takes care of most part of the signaling –H245 negotiation, ringing sending,
automatic connection, media play-.

Fig.57 S5000 call termination services principles

7.1.3. Use cases: Terminate calls with specific media. Gateways
design. (Advanced)

The S5000 API allows to design specific call gateways between different signaling and media data.
This is achieved by giving a more advanced control on network protocol messages to the user
application.
The Generic Gateway Controller API is a subset of the JGKXAPI and allows to send signaling
messages at any time to end points. Furthermore the signaling messages can embed specific media
description.
Here the user application acts as a Media Entity itself but with no predefined actions.

118 – S5000 Reference manual – 2.0-ed1

Fig.58 Generic Gateway Controler. Make different systems to dialog.

Fig.59 Generic Gateway Controller. Let the application control the signalling on each side.

A
B

SIP SPECIFIC

SYSTEM

JGKX

User application

specific1 2

A
B

SIP

INVITE

Application

SETUP (cid)

Api_xxx()

Blocks

And waits control()
CONTROLED Specific exchanges

accept() : S5k propagate message

reject() : S5k reject call or request

control() : let the application full handling

unblocks

sendAlertingExt(cid)

180_RINGING (cid)

sendConnectExt(cid, [body])

200_OK (cid, body)

SPECIFIC

ENTITY

119 – S5000 Reference manual – 2.0-ed1

7.1.4. Use cases: Transmit privateData in a call

JGKX API allows the transport of private data within a call using existing protocols fields and
messages that do not harm in any way the existing system but transport important informations for
applications.
Along with voice communication, proprietary data can be send using the API commands
setPrivateData(), described in the API part of this document. This uses standard H323 or SIP
messages.
This is done in a completely transparent way from the developer point of view.
Here is a more detailed view of the principle as given for SIP calls.

Contact SIP field is used to set this proprietary informations as stated from RFC3261 Augmented BNF
for the SIP protocol:

Contact : <sip:xx@ddd.com> ;contact-extension

M2Msoft defines contact-extension as the generic parameter:

m2mpr=data;

Below is a sample of use:
Contact : <sip:897@192.168.0.34 ;m2mpr=786/2
Transports the private data « 786/2 ».

The figure below shows the send/receive message/actions flow thru GKXAPI:

Fig.60 S5000 carries private data within call setup

APP

INVITE

st.setPrivateData(« AB/67 »);

st.accept();

event
response

INVITE
Contact:<sip:xxxxx>;m2mpr=AB/67

APP

Print:

privateData=AB/67

INVITE

1 3

2

120 – S5000 Reference manual – 2.0-ed1

7.1.5. Multithread and sessions

Fig.61 S5000 a generic multithreaded engine for applications

JGKXAPI allows for multi-threaded user applications, even in non-multithread environments. As shown
in previous figure, for every application connected to M2M-S5000, a set of session-contexts are
created according to an external setting: this is independent of the user application and allows for call
capacity planning per application. The S5000 hosts its very own multithread engine for the
applications, not relying upon system thread that may not exist. (when available the developer
however can easily add threads to his application if needed)
Each context lives independently of the others but listen on the same route masks. Route masks are
the conditions that determine an application to receive events versus another.
The S5000 embedded services defines the routes masks for the applications.

If an application is set to receive calls with called number = 5*, this application will receive events
whenever a call is placed with a called number =5 and so on. All other calls will not go into this
application. According to embedded services management, calls will go to another application that has
waiting call contexts or directly to a new direction or endpoint.
If two applications are connected, one with routing on a mask=5*, the other with 6*, they will receive
the events accordingly to their masks.
If two or more applications are connected with the very same mask, M2M-S5000 will distribute all
events sequentially application per application. Once all contexts from application 1 are connected,
Application 2 will receive events, and so on. As soon as connections are freed, application 1 will
receive events again, etc…
When no contexts are available for a call, and if it matches an application, the call is rejected.
If an application is not waiting for any call, it is recommended to create an embedded service to direct
the calls to an answering machine for example.
See § 5.6.1 and § 6.7.2 for more details about routing calls toward applications.

Connected slots

121 – S5000 Reference manual – 2.0-ed1

7.1.6. Use cases: Applications for VoIP monitoring only

One can design monitoring only applications that can work alone or with any number of other
applications on top of S5000.
A simple mode can be set to have an application only receive event without the ability to interfere on
them. Such applications only see incoming, outgoing calls, alerting events, releases but for all other
applications.
In the figure below, APPL2 is an application that receives the VoIP events as notifications only. Of
course, the event is also sent to a “real” (aka not in notifyOnly mode) active application if there is such
an application and a routing within the S5000.
APPL2 can exist alone, without any other applications.

For more details, please see jgkx setNotifyOnly() method below.

NOTE: an administrative API also exist to request ‘on the fly’ information about call list, sip accounts
and registered endpoints.

122 – S5000 Reference manual – 2.0-ed1

7.1.7. Advanced considerations

Concurrent timers

While a multithreaded application is interesting to ease the automatic management of multiple calls,
not relying upon system threads it has the fall back of being sensitive to any slowdown and ‘sleeps’ the
developer adds in his code. No more events are processed for the other connections.

That is why we
provide a timer
system that allow
to arm and
manage any time
waiting’s within

an application while not blocking the processes.
A different timer per session (i.e. per slot) can be started and managed.
On an event (SETUP for example), a timer is created (with setTimer() from the CTX object) and a
moment later, a special TIMEOUT event will be generated as the timer has expired. The
corresponding CTX object is given in parameter.

For example, this can be used to detect when nothing is done on a connection after a SETUP as to
detect an infinite ringing …
This can be also used for periodic checks of information within databases, etc.

Session User data

The multithreaded concept of JGKXAPI applications allows for a single binary to handle multiple calls
simultaneously. It is up to the designer of the application to handle his 'session context' and the events
that pertain to the same call context.
To ease this management, call events belonging to the same 'slots' are attached a same “sessionId”
value. The “sessionId” is a readable attribute from all event messages got from callback calls.
The developer can store values connected with the current connection (setData()) and retrieves these
values later on (getData()). All these stored values are called « session context ».

For example, one can store the original called number as seen in an ARQ event. In the SETUP event,
the called number can be changed and then in the RELEASE, the developer can retrieve the original
called number as set in the 'session context.

Media Entities and media services

The API enables access for advanced services using the half communication concept named Media
Entity. These MediaEntities live within the attached server – aka S5000 or Media Entity Server (MES) -
. The Media Entity (ME) allows getting all signaling and media information within the attached server
and thus acting on these at any time.
Typical applications that uses ME are:
– voice answering machine (redirect the calls to a Media Entity whenever you're not available)
– status message (to terminate a special number called)
– voice message/alert (dial out a voice message to someone phone)
– call center (let's wait incoming calls and connect incoming numbers to local operators phones as they
are available)
A Media Entity s associated with an alias name (example “911” or “Player1”) and a file name. (files
must contain valid audio data: G711ULAW is supported, new formats are coming soon)
The alias is the way to identify and route calls to it. The file name is the voice file to play to callers or
called.
Media Entities are available in H323 and SIP protocols.
An extended concept is done with Generic Gateway Controller functions that allow to move even
forward in capabilities by processing nonstandard signaling and media on sip call legs.

Reminder: The JGKXAPI engine is not relying on threads for maximum
portability and thus you must avoid sleeps and large delays within your
callback routines, unless you can detach threaded routines and return hand
to the engine.

123 – S5000 Reference manual – 2.0-ed1

Fig.62 S5000 and mediaEntity: a simple paradigm for new services with media

Media Entity programming is simple enough to make you perform all kind of telephony services.
You have to connect all your parties to Media Entities elements then join, unjoin and reconnect all of
these half calls. (media codecs capabilities may be renegotiated automatically)

A sample application graph

The very next graph depicts a sample application that connects seamlessly calls through ME and
perform direct voice pre-emption when the called party already in the call receives a new incoming
call.
Let’s say the first two parties A and B are connected to ME1 and ME2 Media Entities. A new call from
C arrives for B: then we releases the A party and force B to talk with C.

124 – S5000 Reference manual – 2.0-ed1

Fig.63 A sample application call flow

This document details the functions and events set associated to this MediaEntity and halve calls
feature.

Inter Applications Communications (IAM)

Multiple applications can be connected to a S5000 at a time. Every application has a name (default
one or user defined). Every application can send specific messages to any other applications.
This can be used as a facility to avoid implementing dedicated inter application communication by way
of sockets, etc. The JGKXAPI and S5000 provide a ready to use mechanism to send/receive byte data
messages between an application to another, asynchronously, thru the S5000.

125 – S5000 Reference manual – 2.0-ed1

7.1.8. SIP Proxy entities, Client, Server and INFO data transport

The API enables to activate SIP envelope for application by allowing them to act as a SIP UserAgent
Client or SIP UA Server.
The API allows to:
- make your application to register with a sip registrar, or not
- make your application to establish connections with specific content types (currently pure private and
CSTA contents)
- make your application to exchange specific, non SDP data on a connection

Each of these features can be used separately.
For SDP and embedded media functions, one must use the Media Entity.

SipProxy entities live within the S5000, as the MediaEntity and automatically handle the registration
process, and the necessary events to the application (registration success, failure, timeout) as well as
the communication process and the data exchange process with another capable entity.

A SIPProxy entity can handle multiple communications at a time.

126 – S5000 Reference manual – 2.0-ed1

Fig.64 SIP Proxy entity design

Benefit of SIP Stack rich features in a blink

Creating and working with SIP Proxy feature make your application be SIP compliant without the need
to understand and handle the detailed network messages involved.
The M2Msoft SIP stack features are used, especially on transport mode: UDP, TCP, TLS can be
selected for the SIPProxy.

Free data communication or standardized data communication

Currently, one can transport any data of its choice over the SIP link through the SIP Proxy entity.
These data are transported attached to INFO SIP Messages.

Allowed Content types are:

Pure free content tagged with Content Type set as
application/private

CSTA over SIP (ECMA-323) XML content and is tagged application/csta+xml.
Special functions are provided to handle this
content

127 – S5000 Reference manual – 2.0-ed1

Other non-voice/video contents may be added later on.

This chapter details the functions and events set associated to this SIP Proxy feature.

Fig.65 SIP Proxy entity call flow with automatic registration

Fig.66 SIP Proxy entity call flow with automatic registration and permanent keep alive

Application

Allocation

SIPProxy

jdoe

REGISTER

Response 200 Ok

Event RCF

REGISTER

Response 200 Ok

ttl

Event RCF

SIPProxy

jdoeINFO + data
Event INFO + data

Analysis

Compute new data

Reply acceptSend OK + data

SIP

Registrar/Proxy

Create SIP Proxy name=« jdoe »

createSIPProxy(« jdoe »,

« 192.168.0.30 », 30, « UDP »);

registrar=192.168.0.30, ttl=30s, protocol=UDP

Application

Allocation

SIPProxy

jdoe

REGISTER

Event RTIMEOUT

Try to REGISTER

Timeout

(T0=4 secondes)

SIP

Registrar/Proxy

Create SIP Proxy name=« jdoe »

createSIPProxy(« jdoe »,

« 192.168.0.30 », 30, « UDP »);

registrar=192.168.0.30, ttl=30s, protocol=UDP

Event RTIMEOUT

Timeout

(T0=4 secondes)

REGISTER

Response 200 Ok

Event RCF

128 – S5000 Reference manual – 2.0-ed1

Fig.67 General SIP Proxy entity call flow with an initiated call

Application

Create SIP Proxy name=« jdoe »

Allocation

SIPProxy

SP1

REGISTER

Response 200 Ok

Event RCF

SIP

Registrar/Proxy

. . .

sendInviteSipProxy(« jdoe »,

« 546@dom.org », « 879@192.168.0.8 »);

Start a call to 546@dom.org.

createSIPProxy(« jdoe »,

« 192.168.0.30 », 200, « UDP »);

registrar=192.168.0.30, ttl=30, protocol=UDP

INVITE

Response 200 Ok

Pick up

ACK

Event CONNECT
Response 180 Ringing

Ready to send other data thru info messages for

Example.

129 – S5000 Reference manual – 2.0-ed1

Retransmission and timeout timers on unreliable connection links

When operating on UA over unreliable (aka UDP) channels, the SipProxy entity handles the
retransmission of requests (INVITE, INFO, BYE). T1 is used as defined per SIP RFC3261. T1 has an
internal value of 500 ms.

Fig.68 SIP Proxy transport retransmissions handling

The retransmission only applies when no response has been received from peer. If the peer replies
with “trying” or “ringing” but does not connect the call, it is up to the application to decide with the
appropriate timer, to clear the establishing call, as shown below.

NOTE that sendByeSipProxy generates a CANCEL or a BYE SIP message according to the call
status.

Application
SIP

Registrar/Proxy

. . .

sendInviteSipProxy(« jdoe »,

« 546@dom.org », « 879@192.168.0.8 »);

Start a call to 546@dom.org.

INVITE

Tcp

Reliable channel

Allocation

SIPProxy

SP1

INVITE

T1

Retransmit

UDP

UnReliable channel

INVITE

2*T1

Retransmit

2*T1
Event DISC (reason=timeout)

On reliable – TCP – channel, RFC3261 states that there is no retransmissions needed but

even in TCP mode, we arm a T1 timer to detect a no response from the peer.

(Trying, ringing, etc are expected)

130 – S5000 Reference manual – 2.0-ed1

Fig.69 SIP Proxy transport invite with no answer (no connect) from peer.

SipProxy call flows samples

Fig.70 SIP Proxy Invite on socket closed

Application
SIP

Registrar/Proxy

sendInviteSipProxy(« jdoe »,

« 546@dom.org », « 879@192.168.0.8 »);

Start a call to 546@dom.org.

INVITE

Allocation

SIPProxy

SP1

100 Trying

. . .

CANCEL

No retransmission as we’ve got

an answer on schedule

Peer does not connect Timeout

No answer

In application

sendByeSipProxy(« jdoe », « 879@192.168.0.8 »);

Release call

. . .

Application
SIP

Registrar/Proxy

. . .

sendInviteSipProxy(« jdoe »,

« 546@dom.org », « 879@192.168.0.8 »);

Start a call to 546@dom.org.

INVITE

Tcp

Reliable channel

Allocation

SIPProxy

SP1

TCP

Reliable channel

Event DISC (reason=serviceunavailable)

Socket error

131 – S5000 Reference manual – 2.0-ed1

Fig.71 SIP Proxy Invite and call connected

Fig.72 SIP Proxy Info request, with retransmission

Fig.73 SIP Proxy Info request failure, with error return from party

Application
SIP

Registrar/Proxy

sendInviteSipProxy(« jdoe »,

« 546@dom.org », « 879@192.168.0.8 »);

Start a call to 546@dom.org.

INVITE

TCP

Reliable channel

Allocation

SIPProxy

SP1

TCP

Reliable channel

Event CONNECT (infoData=body)

100 Trying

. . . 200 OK + body

ACK

No retransmission as we got an answer in time

Application
SIP

Registrar/Proxy

sendInfoSipProxy(« jdoe »,

« DTMF=# », «CALLIDAZERTY»);

Send INFO data within the call

INFO + body

Allocation

SIPProxy

« jdoe »

Event INFOOK (infoData=body)

200 OK [+body]

. . .

Connected call

Retransmit
T1

Application
SIP

Registrar/Proxy

sendInfoSipProxy(« jdoe »,

« DTMF=# », «CALLIDAZERTY»);

Send INFO data within the call

INFO + body

Allocation

SIPProxy

« jdoe »

Event INFORJ (reason=bad request, etc)

4XX reason]

Connected call

Peer rejects the

request

132 – S5000 Reference manual – 2.0-ed1

Fig.74 SIP Proxy Info request failure, with network error

7.1.9. What API subset for what usage?

API subset General API

SIPProxy API

GWControl API

Adm API

What for Call routing with
numbers changes,
addresses changes

Call termination on
standard media
(G711/G723.1/G729)

Half calls with std
media (Gxx codecs)

High level
management (most
protocol messages
hidden)

H323, SIP
independant API

SIP Client
development
with registration

Specific bodies
SIP API (CSTA or
other text content)

Gateway
development with
SIP side and
standard or
specific
packets encoding

Specific messages
bodies

Half call with
specific body low
level management
(explicit send of
protocol
messages)

Call contexts
rebuild and
request for
resilience.

Administration
Tools
API: used to
design overall
administration,
monitoring
tools on top of
the S5000.

For Call
Operators,
Centrex
Operators, etc.

Application
SIP

Registrar/Proxy

sendInfoSipProxy(« jdoe »,

« DTMF=# », «CALLIDAZERTY»);

Send INFO data within the call

INFO + body

Allocation

SIPProxy

« jdoe »

Socket error

Connected call

Network problem

Event DISC (reason=serviceunavailable)

133 – S5000 Reference manual – 2.0-ed1

7.2. Java API (JGKXAPI)

7.2.1. How does it work?

The programmer needs the following file to work with:

gimsAPI1.0.jar

This contains all necessary classes to develop and run a client application towards the M2M-S5000
server or any other server based on the JGKXAPI.

The typical structure of a user program is the following:

1 The necessary imports from the API

2 The use of a listener Interface
The use of the jgkx Listener enables the processMessage() callback function. This callback function
will be called by the API as soon as events occur.

3 The start function that initialize the API
The jgkx object is created with IP address and TCP port used to connect to the S5000.
The user must:

 create a jgkx instance to connect to the server

 arm the callback function for the events to be caught

 start the job, informing the server to start forwarding events for us

4 The user process function
In order to receive real time events for all its handled calls, the user must define a call back function
named as below in which user code will be placed to act upon the events.
Only one such function is allowed in a client application.

/* necessary inclusions*/

import gkcom.*;

import gkcom.jgkx.* ;

public class HelloWorld implements jgkxListener {

// ….

String IPADDR=193.7.1.213;

int PORT= 16000;

// connects to M2M-S5000 GK

jgkx cnx = new jgkx(IPADDR, PORT) ;

// add process callback

cnx.addCallback(this);

// set the application name (for routing), request 5 slots and start the main loop

cnx.start(5, “SAMPLE1”);

public void processMessage(GKMSG msg, CTX ctx)

{

 // user code here with events management

}

134 – S5000 Reference manual – 2.0-ed1

7.2.2. My HELLO WORD

This chapter details a complete call management application and makes use of the functions and
values changes.

 Due to the evolving nature of the API, we cannot guarantee that the code depicted here is
exactly working with your API version; but we deliver up to date source sample with all our
API packages.
Ask your M2MSOFT representative for the working code sample.

Application specifications

MyHelloWorld is an application that performs call deflection upon no answer:

 accept only registrations from endpoints with E164 alias that does not begin with a '2'

 accept calls only to location “999” then forward to a new number : “1003” ; else reject call.

Step by step programming

NOTE: This application works for SIP and/or H323 terminals.

package jgkxsample;

/* API includes */

import gkcom.jgkx.*;

import gkcom.*;

/**

 * Client application.

 *

 * Connects to the S5000 server

 *

 */

public class jclient1 implements jgkxListener

{

 public static String IPADDR="193.7.1.216";

 public static int PORT=16000;

 int ctxIdx=0;

 public jclient1()

{

 entryPoint();

 }

 private void entryPoint()

 {

 System.out.println("entryPoint: entering");

 jgkx api = new jgkx(IPADDR, PORT);

 System.out.println("JGKX API version : "+api.getVersion());

 api.addCallBack(this);

 /* start and request handling of 5 simultaneous calls */

 api.start(5, “Sample1”);

 }

135 – S5000 Reference manual – 2.0-ed1

/* process code HERE !!! */

 public void processMessage(GKMSG gkMsg, CTX ctx)

 {

 System.out.println("processMessage: entering ctx="+ctx);

 /* ***

 * purpose :

 * when an endpoint RRQ with 2* => reject

 * all other are accepted. (RCF)

 * When a called number is 999 => change to 1003 and

 accept (propagate SETUP)

 * else reject (ReleaseComplete generated)

 */

 switch (gkMsg.type) {

 case gkcomMsg.RRQ :

 RRQ_REPLY RRQ=new RRQ_REPLY(gkMsg, ctx);

 System.out.println("client1::processMessage: RRQ reply");

 if (gkMsg.e164_source.charAt(0)==’2’) {

 System.out.println("client1::processMessage: RRQ reject");

 RRQ.reject();

 }

 else

 RRQ.accept();

 break;

case gkcomMsg.SETUP :

 SETUP_REPLY SETUP=new SETUP_REPLY(gkMsg, ctx);

 System.out.println("client1::processMessage: SETUP reply");

 if (gkMsg.e164_destination.compareTo("999")==0) {

 SETUP.changeE164Destination("1003");

 SETUP.accept();

 System.out.println("client1::processMessage: SETUP accepted!");

 else

 SETUP.reject();

 break;

 }

}

public static void main(String[] args)

{

 /* start application */

 jclient1 ipapp = new jclient1();

 }

}

136 – S5000 Reference manual – 2.0-ed1

7.2.3. Packages and Classes

The JGKX API is composed of a file: gimsAPI1.0.jar.
This file contains 2 packages:
gkcom
gkcom.jgkx

These java packages must be imported within every application.

The classes used are:

Class / Interface Description

jgkx The main class used to connect to M2M-S5000 and arm callback
management.

GKMSG The event structure passed to the user function.
The user can access and modify a number of attributes issued from
the H323 or SIP message.

CTX As a multi-threaded application, a context specific object is handled
to the user method as well.
Used to store data and to send commands for the call (Release)

jgkxListener Interface to use in every JGKX application. Enable the user class to
be handled by the callback system

RRQ_REPLY Used to activate any change, modify, accept and reject of H323 RRQ
or SIP REGISTER event

ARQ_REPLY Used to activate any change, modify, accept and reject of ARQ event
SETUP_REPLY Used to activate any change, modify, accept, reject and control of

SETUP or SIP INVITE event
CONNECT_REPLY Used to accept or reject a CONNECT event. Some fields can be set

at that time, as the display value.
OLC_REPLY Used to accept or reject with media channels changes, the H245

channels establishment
OLCACK_REPLY Used to accept or reject with media channels changes, the H245

channels establishment

SUBSCRIBE_REPLY Uses to reply to a SUBSCRIBE request. SIP only.

137 – S5000 Reference manual – 2.0-ed1

7.2.4. Class jgkx

This class manages the connection with the S5000 and the global internal scheduling of events and
callbacks. There are general functions and half calls management functions splitted over four functions
subsets.

b) General functions

Method Signature Description

jgkx jgkx(String ip, int tcp_port) Creates an object to connect to a M2M-S5000 at
the ip IP address and tcp_port TCP port.
Default value for the port: 16000...

addCallback void addCallback(jgkxListener
obj)

Registers the user main class that contains at
least the processMessage() method. This class
and method will be used for callback accesses
by the API...

start int start() Activate the API connection and main loops. As
soon as events will arise, the API will
automatically call processMessage() within user
program.
Return -1 when failure to connect to S5K

 int start(int nb) Activate the API and main loop.
Enables the application to handle simultaneously
nb calls.
nb is the total concur. calls being handled and
can be 0: in that case, not calls can be handled
but only administrative functions may be called.
see Administrative functions chapter)

Return -1 when failure to connect to S5K

 int start(int nb, String name) Activate the API main loop and set an application
name name. This will be seen with the S5000 for
routing.
nb is the total concurrent calls being handled
within this application. Nb can be 0.
name is a unique name to be given to the
application (routing can be based on this and
inter application communication)
Return -1 when failure to connect to S5K

stop void stop() Disconnect the current application from S5000,
stop the underlying callback.

setForcedRoute void setForcedRoute(boolean
forced)

Call this before start().

When forced is true all the call are forwarded to
this application, no embeddedService is needed.

setNotifyOnly void setNotifyOnly(boolean b) Call this before start().

When setNotifyOnly(true), no call are handled
but ALL calls events are monitored in this
application. Only administrative functions can be
called. (see Administrative functions chapter)
Several applications can be in NotifyOnly mode
at a time. All NotifyOnly applications receive the
events.

getVersion String getVersion() The version name and number of the jgkx api
used.

138 – S5000 Reference manual – 2.0-ed1

addListen addListen(int pkg) Call this before start().

Add an event set to be handled within the
application.
Standard values are :
- H245
- RSVP
- INFO-CSTA
- SUPSERV (H450 events)
This adds new events to be handled according to
the underlying protocol.

getCallId String getCallId() Allocates and returns a unique call identifier (in
the H323 meaning). The result String is a human
readable string of 32 digits.
This value is used as input for the startCall
method.

139 – S5000 Reference manual – 2.0-ed1

startCall int startCall(
String callId,
String calledE164,
String destAddr,
String callingE164,
String display)

Generate a dialout half communication / Media
Entity.
CallId is the callIdentifier of this half call, as
generated by getCallId().
CalledE164 is the phone number of the endpoint
to call.
DestAddr is an IP address to reach as gateway
for the call. Use it in case of a voIP Gateway or
non-registered recipients. Leave this parameter
to “null” in case of a registered recipient.
CallingE164 is the mediaEntity to use for this
call.
Display can be left null or set to a specific value
([A-Za-z0-9] digits) that will be added within the
Q931 display element of the call to start.
Return 0 when success, -1 if error.
In case of a call failure, a DISC event with the
related callId will be delivered.
In case of success, a SETUP event with the
related callId will be delivered.
Please refer to [S5KUMAN] for media entities
explanations.

joinCall int joinCall(
String mediaEntity1,
String mediaEntity2)

Bind two half calls. Enable the RTP/RTCP
connection between two half communications.
MediaEntity1 and mediaEntity2 are the names
(aliases) of two valid mediaEntities, connected to
endpoints.
Connections can be dialin or dialout.
Please refer to [S5KUMAN] for media entities
explanations.

unjoinCall int unjoinCall(
String mediaEntity1)

Unjoin two half communications that were
previously joined. Just ask for one of them,
mediaEntity1 and the original call is no longer
RTP-connected, the parties hear the waiting
playfiles associated to their MediaEntities.

setPlayFile int setPlayFile(
String MEName,
String fileName)

Set or Change Media Entity playFile.
This is immediately activated if MEName is in a
call or will be activated for the next call that
involves MEName ME.

setMERingDur
ation

int setMERingDuration(String
media, int nb)

Set the ringing delay for the named Media Entity.
The ME connects just after nb seconds.
Returns -1 if nb <0 or > 65535
Else returns 0.

setMEDisplay int setMEDisplay(String media,
String d)

Set the display d info for the ME media. This
display is sent for outgoing calls from this ME or
for the connected cqalls to this ME.
Rrturns -1 if d is invalid else return 0.

140 – S5000 Reference manual – 2.0-ed1

setCodecList int setCodecList(
String MEName,
String codecsList)

Set the codecs for the MEName.
codecsList is a list of codecs forced to be
advertised in H323 H245 TerminalCapabilitySet
message and SIP INVITE or 200 OK messages.
Priority is defined by the list order, first codec set
is first priority.
List of codec is expressed as a coma separated
string tokens. Up to 9 codecs can be specified.

Standard Codecs are defined by the following
keywords:
G711A
G7231
G729
Example of list is;
“G711A,G7231”
Or
“G711A,G729,G7231”

Spécial codecs for SIP/SDP protocols are
specified by using “SDP<codec definition>”
format:
Example of list is;
“SDPrtpmap:8 PCMA/8000”
SDP is the keyword; rtpmap: 8 PCMA/8000 is
the parameter.
An SDP line according to the parameter set will
be produced.

Exemple of call:
_api.setCodecList("ME1”, "SDPrtpmap:8
PCMA/8000,SDPfmtp 19 ptime=45,G729");

Return >0 if command has been taken.
-1 when failure (bad codecs)

141 – S5000 Reference manual – 2.0-ed1

setLoop int setPlayLoop(
String MEName,
int loopnb)

Defines a number of times to play the Media
Entity MEName file.
loopnb can be any number from -1 to 65535.
-1 means unlimited.
0 means no file will be played.

Return > 0 if command has been taken.
-1 when failure (bad loopnb)

create
MediaEntity

int createMediaEntity(
String MEName)

Creates a MediaEntity named MEName within
the S5000.
NOTE: setPlayFile() must be used to set a
specific audio file to this ME.
When success, returns >0.
 On ME_CREATED event, operation is complete.

splitCall int splitCall(
String callId,
String callingME,
String calledME)

Split a ‘standard’ call (point to point) into two
halves calls connected to MediaEntities.
callId is the callIdentifier of the original
established call.
callingME is the requested name of the
MediaEntity to attach to calling party.
calledME is the requested name of the
MediaEntity to attach to called party.

getEPList int getEPList() Request the current S5000 registered endpoints
database view.
The event EPLIST is expected.
Returns 0 when request has been successfully
transmitted, else -1.

getStatus int getStatus() Request the current S5000 status upon:
License mode, name, description and group
status.
The event STATUS is expected.
Returns 0 when request has been successfully
transmitted, else -1.

getCallsList() int getCallsList() Request the current S5000 call list (H323, SIP
and H323/SIP calls):
Call class, callid, caller, called, state, establishing
date.
The event CALLSLIST is expected.
Returns 0 when request has been successfully
transmitted, else -1.

sendNotifySIP int sendNotifySip(String name,
String data, String callId, int id)

Talk to a “sip subscriber”.
Build and generate a spontaneous NOTIFY SIP
message to the party “name”. (use the
h323_source element received within a previous
SUBSCRIBE)
CallId must match the callId of a previously
received SUBSCRIBE event acknowledged.
Data will be added as a specific body in the
NOTIFY message.
Id is unused and can be set to 0.
Returns 0 when request has been successfully
transmitted, else -1.
SIP only.

142 – S5000 Reference manual – 2.0-ed1

sendErrorSIP int sendErrorSip(int code, String
data, String callId, int cseq)

SIP protocol specific.
Send an error reply message to a “sip user”.
Assuming the call is a half call either connected
with a mediaEntity or a call “controlled” by the
application. (see “generic gateway Controler”
chapter)

Build and generate a spontaneous <code> SIP
error response message to the SIP party.
(a sip party connected to the S5000).

CallId must match the callId of a previously
received SETUP or dialout started.
Cseq must be set accordingly to the request one
needs to answer withthis error message.
Returns 0 when request has been successfully
transmitted, else -1.
SIP only.

sendIAMessge int sendIAMessage(
String apName,
byte[] data)

Inter Application Message.
Send a bytes message to an application known
by its name apName.
The recipient application will receive the
message within an IAM event.
At the recipient application:
msg.appName: the name of the originator
application
msg.appMsgData: the byte data

releaseCall int releaseCall(
String cid,
int sipReason,
int h323Reason)

int releaseCall(
String cid)

Releases a call of half call.
Cid is the unique call callidentifier.
SipReason is an optional SIP release reason
(and H323Reason is the H323 release reason) to
be taken from chapter 7.2.5 f and g codes list.
By default, error is: SIP_BUSY and
H323_UNDEFINED
For H323, a Q931 releaseComplete is sent to the
party or parties.
For SIP, depending in the call state, a BYE is
sent to the party or parties or a reason error is
sent.

sendMessage int sendMessage(
String text,
String party,
String ip)

Sends a short text message to the party phone.
The party phone must be registered on the S5000.
Party may be in communication or idle.
Ip parameter: reserved for future use.

The sendMessage() function sends a MESSAGE
sip request to the party. (RFC3428)

NOTE : for SIP party only.

143 – S5000 Reference manual – 2.0-ed1

c) Special SIP Proxy functions

 SIP Proxy methods

createSIPProx
y

 int createSIPProxy(
String name,
String alias,
 String registrar_address,
int ttl,
int mode,
boolean supervised);

Allocates a SIP proxy entity with name name,
sip uri alias and mode mode. This SIP Proxy will
automatically registers to registrar_address ip
address for ttl seconds.
If the ttl=-1, no registration will be made.
The mode is:
jgkx.UDP or jgkx.TCP.
Whne mode is TCP the socket connection can
be supervised to detect a tcp failure.
(supervised=true). Tcp failure while in a call
generates a call disconnection.

Return > 0 for command accepted, -1 when
immediate failure.

The name of the SIPProxy will be used in all
SIPProxy commands.
As the SIPProxy is started, events will come
back regularly: RCF, registration accepted,
RRJ, registration refused, RTIMEOUT, timeout
on registration.
Automatic retries are done within the SIPProxy.

haltSIPProxy int haltSIPProxy(
String name)

Frees a SIPProxy previously allocated with
name name.
This frees the internal S5000 resources and
unregisters the entity from its registrar.

Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

144 – S5000 Reference manual – 2.0-ed1

sendInviteSIP
Proxy

int sendInviteSIPProxy(
String name,
 String remoteAlias,
String proxy_address,
String cid,
String body)

Send a call request.
The request is sent to the registrar/proxy where
name belongs when proxyIP is null or to the
specified proxy_address IP address.
The request can attach a text body. Nobody is
attached when body is null.
An SDP body will automaticaly be detected as
content-type application/sdp.
The callrequest is for remoteAlias URI, and Call-
Id cid. (all events will contains this call id)
Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

setSIPProxyC
ontentType

void setSIPProxyContentType(
String name, String ct)

Set the content type for the data exchanged thru
INFO SIP Messages for name SIP proxy. Must
be set before the call actually connects.
Special defines are:
jgkx.SIPPROXY_CTYPE_PRIVATE
jgkx.SIPPROXY_CTYPE_ECMA323
Other values will be taken inline.

setT1SipProxy void setT1SipProxy(String name,
int t1)

Set a new value for Sip Proxy name T1 timer.
T1 is the new value in ms.
Default value is : 500 ms
Minimum value is : 500 ms

sendInfoSIPPr
oxy

int sendInfoSIPProxy(
String name,
String body,
int cseq)

Send body data on an INFO message on the
connection. cseq is a unique number to
correlate INFOOK/INFORKJ events.
Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

sendInfoOKSI
PProxy

int sendInfoOKSIPProxy(
String name,
 String data,
int cseq)

Send data on an OK info message on the
connection. Cseq is a unique number that must
be the one matching the just received INFO.
Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

sendInfoERR
ORSIPProxy

int
sendInfoERRORSIPPROXY(Strin
g name, int errCode, String data,
int cseq)

Send data on an info error message on the
current connection (for this named sip proxy).
Cseq is a unique number that must be the one
matching the just received INFO request.
Data is an optional body that will be attached to
the SIP message. Can be null.
Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

sendByeSIPPr
oxy

int sendByeSIPProxy(
String name,
 String cid)

Send a BYE on an established ‘callid’
connection.
Send a CANCEL on an establishing connection.
Return > 0 for command accepted or -1 for
immediate reject. (bad parameter)

Example of use
// create SIP Proxy named 123, that registers and works on SIP over TCP.

// let it send INVITE with SDP data to 5180 user on 192.168.0.101 address.

_api.createSIpProxy(“123”, host@192.168.0.111, “192.168.0.111”, 30, _api.TCP);

String body=”V=0\r\n”;

Body+=”o=61 123456 654343 IN IP4 192.168.0.30\r\ns=none\r\nc=IN

IP4 192.168.0.30\r\nt=0 0\r\nm=audio 10010 RTP/AVP 0

8\r\na=ptime:20\r\na=rtpmap:0 PCMU/8000\r\na=rtpmap:8 PCMA/8000”;

_api.sendInviteSIPProxy(“123”, 5180@192.168.0.101, “192.168.0.111”, AZERTY6778”,

body);

…

mailto:host@192.168.0.111
mailto:5180@192.168.0.101

145 – S5000 Reference manual – 2.0-ed1

Special ECMA 323 CSTA content

For SIPProxy entities working with CSTA/SIP, a set of classes and functions ease the protocol.
In this model, uaCSTA is directly implemented as a B2BUA in the JGKXAPI.
The implementation allows developing uaCSTA aware endpoints or server applications.
See chapter 7.2.17 for details on these classes, to be used in conjunction with SIPProxy entities.

NOTE for compatibility with other endpoints:
When setSIPProxyContentType() is set to SIPPROXY_CTYPE_ECMA323, the INVITE, INFO are sent
with:
Content-Type: application/csta+xml

Content-Disposition: signal; handling=required

In case of a non-support within the remote UA (non uaCSTA endpoint),
a 415 Unsupported Media Type will be expected, thus immediate call release on INVITE. (event

DISC within the API)

d) Special Generic Gateway Controler functions

 Generic Gateway Controler methods

startCallExt

int startCallExt (
String cid,
String called,
String data,
String calling,
String display,
String privateData)

Start a generic dial out call.
cid is the unique callIdentifier for this call.
Called is the called endpoint number. The called
number is expected being registered within the
S5000.
Calling is the calling number. Display (can be
null) is a description string that is associated to
the calling party and may be displayed on the
called screen.
Body data is a specific message body (xml for
example).
Data can be null.
SIP usage: the data is used as SIP body for the
INVITE. contentType is automatically set
according to ‘RTP/AVP’ found or not.
Application/sdp or application/private are set as
content-type.
H323 : reserved for future use
privateData is a short text field to be transmitted
to called. No spaces allowed within privateData.
privateData can be null.

As a command success, a DIALOUT event with
the cid callId as set within the startCallExt() is
generated.
On success, when the dialout has been sent to
the party, a DIALOUT event is thrown.
On failure, if called party is unknown or
(network) unreachable, a DISC event is thrown.

Return -1 in case of bad parameter.
else return >=0.

146 – S5000 Reference manual – 2.0-ed1

int startCallExt (
String cid,
String called,
String data,
String calling,
String display,
)

Same with null privateData.

sendAlertingE
xt

int sendAlertingExt(
String cid, String data,
String privateData)

Send a ringing notification to caller.
cid is the callIdentifier, that must exist within the
S5000.
Data is an optional body.
Data may be null.
SIP: send a 180 Ringing to calling.
H323 : reserved for future use
privateData is a short text field to be transmitted
to the party. No spaces allowed within
privateData.
privateData can be null.

Return -1 in case of bad parameter.
else return code >=0.

int sendAlertingExt(
String cid, String data)

Same with null privateData.

sendConnectE
xt

int sendConnectExt(
String cid,
String data,
String privateData)

Send a call pickup notification to party.
Cid is the unique callidentifier as shown from
first message.
Dat is a specific message body to end within the
call pickup to the caller.
Data body may be null.
SIP: send a 200 OK INVITE message to caller
with specific body.
H323 : reserved for future use
privateData is a short text field to be transmitted
to caller. No spaces allowed within privateData.
privateData can be null.

Return -1 in case of bad parameter.
else return code >=0.

int sendConnectExt(
String cid,
String data)

Same with null privateData.

147 – S5000 Reference manual – 2.0-ed1

sendReleaseE
xt

int sendReleaseExt(String cid,
String data ,
String privateData)

Release a call established or establishing.
cid is the call callId.
Data is a private body to add.
Data may be null.
SIP: send BYE or CANCEL on the call leg from
the S5000.
H323: send a Q931 ReleaseComplete on the
call leg.
privateData is a short text field to be transmitted
to party. No spaces allowed within privateData.
privateData can be null.

DISC event is raised.

Return -1 in case of bad parameter.
else return code >=0.

int sendReleaseExt(String cid,
String data)

Same with null privateData.

sendErrorExt

int sendErrorExt(int code, String
data, String callId, int id,
String privateData)

Send an error message on a call leg.
SIP: The error response message with sip
status ‘code’ is sent. Callid is the call identifier,
id will be set for the CSEQ header field and a
data body can be attached to the sip message.
id can be left to 0, the S5000 manages it
automatically. But one can set this precisely if
needed.
Data may be null in case of no body needed.

H323: a call release is done on the call leg with
callid call identifier. In this later case, a DISC is
raised.
id parameter is unused in that case and can be
left to 0.

Return -1 in case of bad parameter.
else return code >=0.

int sendErrorExt(int code, String
data, String callId, int id)

Same with null privateData.

sendNotifyExt

int sendNotifyExt(String name,
String data, String callId,
int id,
String privateData)

Send a message to a subscriber.
SIP: send a notify request with callId
callidentifier, id CSEQ and a specific data body
attached.
name is the subscriber number.
(use the h323_source element received within a
previous SUBSCRIBE)
id can be left to 0, the S5000 manages it
automatically. But one can set this precisely if
needed.
Data and name are mandatory parameters and
cannot be null.
H323: reserved for future use
id parameter is unused in that case and can be
left to 0.

int sendNotifyExt(String name,
String data, String callId, int id)

Same with null privateData

148 – S5000 Reference manual – 2.0-ed1

createCallCtx int createCallCtx(
String callId,
String apName,
byte state,
String calling,
String called)

Create a call context within the S5000 and
within the named apName application, with the
specified callidentifier, state, calling number and
called number.
State is amongst:
GKMSG.CALLCTX_ESTABLISHING
GKMSG.CALLCTX_ALERTING
GKMSG.CALLCTX_CONNECTED
GKMSG.CALLCTX_DISCONNECTED

One or both parties must be registered at the
time of call.

calling number and called number syntax
express the call legs protocols :
Valid syntax is :
sip:<alias>[@control]
<alias> is the calling or called number
@control : means the call is a half call and the
calling or called party is to be handled within the
S5000 as if a control() have been made or a
startCallExt().

The request is made for an application context
that belong to apName application. This
application must be running with at least a free
context for the command to succeed.

Example:

createCallCtx(“az8765”, “APP2”,

GKMSG.CALLCTX_ALERTING,

“sip:6565”, “sip:03456@control”);

This defines an INCOMING half call with a SIP
calling party with alias(from)=6565 - and it must
be registered within the S5000 at that time -, a
called number (to)= 03456 and being handled
as a half call – due to the @control keyword-
within the S5000.

createCallCtx(“az8765”, “APP2”,

GKMSG.CALLCTX_CONNECTED,

“sip:6565@control”, “sip:888”);

This defines a DIALOUT half call with a SIP
calling party with alias(from)=6565 - and it must
be registered within the S5000 at that time -, a
called number(to)= 888 and being handled as a
half call – due to the @control keyword- within
the S5000.

The request will be followed asynchronously by
a CALLCTX event containing the command
result with the S5000.

Return 0 is request has been sent successfully,
else return -1.

149 – S5000 Reference manual – 2.0-ed1

getCallCtx int getCallCtx(String callId) Retrieve a call context within the S5000. CallId
must match an existing call within the S5000.
The request will be followed asynchronously by
a CALLCTX event containing the command
result with the S5000.

Return 0 is request has been sent successfully,
else return -1.

delCallCtx int delCallCtx(String callId) Delete a call context within the S5000. CallId
must match an existing call within the S5000.
The request will be followed asynchronously by
a CALLCTX event containing the command
result with the S5000.

Return 0 is request has been sent successfully,
else return -1.

Example of use

// Spontaneous start of a dialout call with an sdp body. “0534” calls “1234”.

// allocate a callId

 _myCallId= _api.getCallId();

 System.out.println("client1::dialout calId="+_myCallId);

 // defines a sip body

 String body="";

 body+="v=0\r\no=own 001 561 IN IP4 192.168.0.111\r\n";

 body+="s=SIP CALL\r\n";

 body+="c=IN IP4 192.168.0.111\r\n";

 body+="t=0 0\r\nm=audio 50000 RTP/AVP 0 8\r\n";

 body+="a=rtpmap:0 PCMU/8000\r\n";

 body+="a=rtpmap:8 PCMA/8000\r\n";

 _api.startCallExt(_myCallId, /* call identifier */

 "12345", /* called */

 body, /* body */

 "0534", /* calling number*/

 "mydisplay"

);

e) Administration functions

 Administratives methods

getSipAccount int getSipAccount(
String name);

Request informations on a SIP Account
element.
Name is the name of the sip acount as known
within the S5000.
Return SAC event with the list will be raised.
Example:

getSipAccount(“LaCie”);

150 – S5000 Reference manual – 2.0-ed1

setSipAccount int setSipAccount(
String name, String login, String
password, String description,
String sdaList,
int pport,
int maxCalls,
int maxCallsIN,
int maxCallsOUT,
String ufwd, /* uncond fwd*/
String bud, /*backup dest */
boolean g729Only,
boolean noT38,
String rip, /* restricted IP */
int kaMax,
int kaTimer)

Create a SIP Account with the following fields:
Name
Login, password, description and list of sda.
Sdalist is the list of sda number, separated with
coma.
Pport is the preferred port: -1 when no preferred
port is requested.
maxCalls is the maximum allowed concurrent
calls (in/out) with the account.
maxCallsIN is the maximum allowed incoming
calls with the account.
maxCallsOUT is the maximum allowed outgoing
concurrent calls with the account.
Ufwd is the unconditional forward number. If not
empty, direct all calls, any time, to this number.
Bud is the backup sip destination address in
case the account is not available at the moment,
for incoming calls.
g729Only: if true, refuse all calls from this
account that have other codecs than G729.
(forbid all G711 calls for example)
noT38: if true, refuse all outgoing calls from this
account that have T38 codec.
Rip: only this IP will be accepted for this account
callers.

To check a sip account has been created
successfully, use the getSipAccount to retrieve
the data.

Example:

setSipAccount(“LaCie”, “012345”,

“xc,89”, “la cie account”,

“01303434,01303435”, 5089, 50);

delSipAccount int delSipAccount(
String name);

Request suppression of a sip account within the
S5000.

getEPList void getEPList() Request the list of all endpoints data within the
S5000.
Return the EPLIST event with the list will be
raised.

getStatus void getStatus() Request the S500 state: licensed or not
licensed mode.
Return the STATUS event with the mode will be
raised.

getCallsList void getCallsList() Request the list of all calls data within the
S5000.
Return the CALLSLIST event with the list will be
raised.

configSave int configSave() Request the S5000 to save its configuration.
(gk.ini file is regenerated).
Return -1 if request cannot be sent to S5000.
Else return 0.
CONFSAVED event is returned to indicate the
operation result with infoData parameter.

151 – S5000 Reference manual – 2.0-ed1

7.2.5. Class GKMSG and events

This class is related to a M2M-S5000 event and stores a set of attributes related to the event.

 Default event package : (SIP and H323)
 RRQ, URQ, ARQ, SETUP, DIALOUT ALERTING, CONNECT, DISC and TIMEOUT.
 INFO, INFOOK, INFORJ, RCF, RRJ, RTIMEOUT, DISC for SIP Proxies
 SUBSCRIBE
 NOTIFYOK, NOTIFYRJ
 EPLIST, STATUS, CALLSLIST, SAC
 IAM
 CONFSAVED
 CALLCTX

 H245 event package:
 OLC, OLCACK

 RSVP event package:
 RSVP_PATH, RSVP_RESV, RSVP_RESVCONF, RSVP_PATHTEAR

 MediaEntities event package
 ME_MESPLITTED, ME_MECREATED, ME_MECREATERR

 Supplementary services event package (call transfer, etc.)
o SUPSERV (for H450 events)

NOTE: SIP events are mapped on the default event package.

The next table depicts all the S5000 API events from protocol messages.

152 – S5000 Reference manual – 2.0-ed1

a) VoIP Signaling events (from Voip events)

SIP message H323 message H245 message RSVP msg GKX event map

REGISTER RRQ RRQ

INVITE SETUP SETUP

BYE, CANCEL ReleaseComplete DISC

ACK (contextual) CONNECT CONNECT

Ringing ALERTING ALERTING

 OpenLogicalChannel OLC

 OpenLogicalChannelAck OLCACK

 Path RSVP_PATH

 Resv RSVP_RESV

 ResvConf RSVP_RESVCONF

 PathTear RSVP_PATHTEAR

 ResvErr RSVP_RESVERR

 PathErr RSVP_PATHERR

INFO INFO

OK on INFO INFOOK

KO on INFO INFORJ

OK on NOTIFY NOTIFYOK

KO on NOTIFY NOTIFYRJ

SUBSCRIBE SUBSCRIBE

OK on
REGISTER

 RCF

KO on
REGISTER

 RRJ

Timeout / register RTIMEOUT

REGISTER with
0 TTL

URQ URQ

unreachable
Endpoint

Unreachable
Endpoint

 URQ

 H450 SUPSERV

 LOSTCNX (lost
S5000 link)

 DIALOUT
(a startCallExt()
succeed)

Table 1. Signaling events

NOTE: all applications in NotifyOnly mode receive notification of the above VoIP events. There is no
need to “accept”, “reject” or “modify” the event as it is notification only. NotificationOnly mode is
designed for high precision monitoring applications.

153 – S5000 Reference manual – 2.0-ed1

b) Response events (from application commands)
Response events are sent in response to commands.

 Media Entity objects accept commands and the table below shows the awaited events;
 Generic commands expects events in return, as getEPList(). Details follow.

Media Entity command GKX event Comment

Creation success
Creation error

ME_MECREATED
ME_MECREATERR
-privateData field contains the ME
name

Split success
Split error

ME_MESPLITTED
ME_MESPLITERR

General Command GKX event Comment

Endpoint list request
getEPList()

EPLIST
-infoData field contains
 the endpoint list in an
<xml> like view

-aliasList field contains
the list of all SIP and
H323 endpoint aliases,
each-one separated by
a coma

The endpoint list is given as a data string that
contains the database description as below, in
pseudo BNF:

EPList: entrylist END

entrylist: entry SEP entrylist | entry

entry: <class=classval ; type=typeval ;

alias=aliasval

;contactAliases=contactAliasesVal;

ipp=ippval; ttl=ttlval;info=infoval >

NOTE: parameters can come in any order.

classval: H323 | SIP

typeval: integer (reserved)

aliasval: string | string , aliasval

contactAliasesVal: string, string, …

ttlval: integer

infoval: string
ippval: ip_address COLON portval

portval : integer

ip_address : integer . integer .

integer. integer (IPV4)

COLON: :
SEP: \n
END: \n\n

S5000 status request
getStatus()

STATUS
-infoData field contains
 the status list in an
<xml> like view

The status is given as a data string that contains the
database description as below, in pseudo BNF:

STATUS: < stvarlist >

stvarlist: entry ; stvarlist | entry

entry: <version=vers ; name=nameval ;

licstatus=liststatus ;

groupstatus=grpval;master=yes/no >

vers: 1.83-rxx

nameval: S5000 name

licstatus: “no license” | version-

intermediate

grpval: true|false

masterval: true|false

SEP: \n
END: \n\n

154 – S5000 Reference manual – 2.0-ed1

S5000 Calls List
request
getCallsList()

CALLSLIST
-infoData field contains
 the status list in an
<xml> like view

The call list is given as a data string that contains the
database description as below, in pseudo BNF:

CALLSLIST: < callvarlist > END

callvarlist: entry SEP callvarlist |

entry

entry: <class=classval ; cid=string ;

state=stateval ; caller=string;

[sacaller=accountname;] called=string;

[sacalled=accountname;]

establishingDate=date >

classval: H323Call | SIPCall

|H323SIPCall

stateval: ESTABLISHING | ALERTING |

CONNECTED

accountname: string, optional element,

sip account name

(if not present, the party does not

have any associated account)

caller: calling party alias

called: called party alias

SEP: \n
END: \n\n

S5000 Sip Account
data request
getSipAccount()

SAC
-infoData field contains
 the sip account data in
an
<xml> like view

The call list is given as a data string that contains the
database description as below, in pseudo BNF:

<class=SipAccount ; name=string ;

result > END

result: login=string ; password=string;

description=string; maxCalls=int;

 maxCallsIn=int; maxCallsOut=int | “non

existent” ;noT38=boolean

boolean: true / false

END: \n\n

S5000 configuration
save request.
confSave()

CONFSAVED
-infoData field contains
the operation result.

infoData = “success”
or “failure” (config file could not be written for
example)

S5000 call context
operation.
createCallCtx(),
getCallCtx(),
delCallCtx()

CALLCTX
-infoData field contains
the operation result.

InfoData contains the context command result.

<operation=opval;callid=callId;result=r

esval[;reason=reasonval]>

opval: create | delete |get

resval: success | failure

reasonval: cannot find a slot |

unsupported | sip party not registered

155 – S5000 Reference manual – 2.0-ed1

End points list EPLIST infoData field format

Entry
Attribute

class

(String)

type

(integer)

aliases

(String)

ttl (integer) info (String) Ipp

(String)

Description H323 or SIP For future
use

Endpoint
known
aliases, E164,
H323-ID, URI;
coma
separated
values

Time to live
as known
(may
change)

Product and
vendor
information as
extracted from
the endpoint
messages

Ip address
and port of
the
terminal.
(ras
address for
H323, SIP
address
from
requests in
SIP)

Example:

<class=H323;type=1;ipp=0.1.10.12:1726;aliases=60005,SIEMNS;ttl=15;info=”Hin

et LP5100”>

<class=SIP;type=0;ipp=192.168.0.30:5060;alias=5100@192.168.0.30;5060,Office

;contactAliasesVal=5101,5102;ttl=2;info=”Swissvoice IP10S”>

\n
\n

Calls list CALLSLIST infoData field format

Entry
Attribute

class

(String)

cid

(String)

caller

(String)

sacaller
(string)

called (String) sacalled
(string)

Description H323Call or
SIPCall or
SIPH323Call

Call id
of the
call (as
set by
the
caller)

originator
known number
(sip:
name@domain)

Optional
Sip account
 for caller

Called party
known number
(sip:
name@domain)

Optional
Sip account for
called

Entry
Attribute

Esta. Date

(string)

state (String)

Description Date of call
setup
Day_of_week
month day year
hour:min:sec:ms

Call state
ESTABLISHING
ALERTING
CONNECTED

Example:
<class=SIPCall;cid=536c-c0a80101-0-

2@192.168.0.44;caller=5144@192.168.0.30;sacaller=CIE1;called=5145@192.168.0

.30;sacalled=MYCIE;establishingDate=Sun May 06 2007

17:25:09.257;state=CONNECTED>

<class=SIPH323Call;cid=4142434445464748494A4B3130303034;sipParty=5146@192.1

68.0.30;h323Party=911;establishingDate=Sun May 06 2007

17:25:57.738;state=CONNECTED>

\n

Sip account data SAC infoData field format

Entry
Attribute

class

(String)

name

(String)

login

(String)

Password

 (String)

description

(string)

maxCalls

(int)

maxCallsIn

(int)

maxCallsOut

(int)

Description SipAccount Name
of the
account

login password Account
desc.

Total
conc.
calls
alowed

Total IN
conc.
calls
alowed

Total OUT
conc.
calls alowed

156 – S5000 Reference manual – 2.0-ed1

Example:
<class=SipAccount;name=prTel;login=prt;password=partner;description=special

_account;maxCalls=30;maxCallsIn=30;maxCallsOut=30>\n\n

c) GKMSG methods

Method Signature Description

getInformation
TransferCapab
ility()

 int
getInformationTransferCapability
()

Returns an abstract from the
Bearer capability of a call that
indicates the audio or audio/video
nature of the call.

Valid values are:
SPEECH
AUDIO31KHZ
UDIGITAL (unrestricted digital)
RDIGITAL (restricted digital)
The UDIGITAL and RDIGITAL
values are most often associated
with audio+Video calls.

H323 only.

d) GKMSG attributes

Attributes Type Description

transaction String A unique number allocated within the gatekeeper.
Read Only

type int The message type (event) amongst the values :
gkcomMsg.RRQ
gkcomMsg.URQ
gkcomMsg.ARQ
gkcomMsg.SETUP
gkcomMsg.ALERTING
gkcomMsg.CONNECT
gkcomMsg.DISC
gkcomMsg.TIMEOUT
gkcomMsg.SUPSERV
gkcomMsg.SUBSCRIBE
gkcomMsg.INFO
gkcomMsg.INFOOK
gkcomMsg.INFORJ
gkcomMsg.RTIMEOUT
gkcomMsg.DIALOUT
gkcomMsg.EPLIST
gkcomMsg.STATUS
gkcomMsg.CALLSLIST
gkcomMsg.SAC
Read Only

sessionId String The slot number for this application, where the event
occurred
Read Only

ip_source String The IP address of the caller

157 – S5000 Reference manual – 2.0-ed1

Attributes Type Description

ip_dest String The IP address of the recipient endoint

e164_source String The E164 alias from the originator endpoint (if any
E164 is provided)
Read/Write – see later on for change

e164_dest String The E164 alias for the called recipient.

h323_source String The H323Id alias from the originator endpoint (if any
H323Id is provided)(also the from field of SIP
messages)

h323_dest String The H323Id Alias – if any- for the called endpoint

privateData String A private data area that can be forwarded thru special
H323/Q931 or SIP fields.
Unlimited length. Transport is done thru:
-NonStandardParameter field of Q931 SETUP
message;
-Generic parameter of SIP INVITE Contact field
Subject to change in subsequent versions, contact your
local dealer for this
Only with SETUP messages.
Read/Write – see later on for change

ttl int The Time To Live in seconds as advertised by endpoint
in RRQ/REGISTER event.

bandwidth String Only in ARQ messages for H323.
The bandwidth value as requested by the caller
terminal. The value is expressed in 100th.
For example: 1280 means a 128 KB is requested.
Read/Write

callId String The callIdentifier unique value per call as allocated by
the H323 sender terminal.
This value will be set with ARQ, SETUP, ALETING,
CONNECT, RELEASE, OLC, OLCACK messages.
Read Only

display String The Q931 DISPLAY information element.
Present in SETUP, CONNECT messages.
Read/Write – see later for change

isStatic boolean True when the message came from a static entity
element within the S5000. False otherwise: call comes
from a registered endpoint.

gateway boolean True when the message came from a Gateway system.
False otherwise.
Only with SETUP messages.
Read only.

ip_ifDestAddress String In Multihomed platform, contains the local ip address
that received the event.
Present in all events.
Read Only

h245MediaChanne
l

String RTP address for the media channel
Only with OLC and OLCACK
Read/Write

158 – S5000 Reference manual – 2.0-ed1

Attributes Type Description

h245MediaPort int RTP UDP port for the media channel
Only with OLC and OLCACK
Read/Write

h245MediaControl String RTCP address for the control channel
Only with OLC and OLCACK
Read/Write

h245MediaControl
Port

int RTCP UDPport
Only with OLC and OLCACK
Read/Write

h245Session int Channel number (to separate audio, video)
Only with OLC and OLCACK
Read/Write

h245DataType int Codec type
AUDIODATA
VIDEODATA
APPLICATIONDATA
Only with OLC and OLCACK

h323Reason int Protocol detailed reason for call release. H323 Reason.
(see tables 3 and 4 below)

sipReason int Protocol detailed reason for call release. SIP Reason
(see tables 3 and 4 below)

rsvpSession String RSVP session information (unique string info with IP
address and port, to all RSVP exchanges for one rsvp
controlled flow)

rsvpTimeValues String This RSVP message refresh timeout (ms)

rsvpSenderTempla
te

String Srce address and Src port (UDP here)

rsvpStyle String Shared Explicit (“SE”), Fixed Filter (“FF”) or Wildcard
Filter (“WF”)

rsvpFlowSpec String Int serv information: token bucket

rsvpFilterSpec String Same as sender template

infoData Sring SIP messages :
Private or application specific data body contained
within INFO, INFOOK or REGISTER message
S5000 messages :
EPLIST event data.

cseq String SIP messages only.
The CSEQ SIP header attribute value.
Example:
 “3 INVITE”

This cseq value can be used to build user defined
messages to endpoints.

locallyInitiated boolean For DISC events only.
True when the DISC results from a sendReleaseExt()
of the application.

159 – S5000 Reference manual – 2.0-ed1

Attributes Type Description

appName String IAM message.
On IAM Inter Application Messaging, name of the
originator application.

appMsgData byte[] IAM message.
On IAM Inter Application Messaging, data content of
the message received.

aliasList String Filled after an EPLIST or RRQ event.
Contains the list of all SIP and H323 endpoint aliases.
Each one is separated from the others by a coma.
Only the aliases (without domain) are printed.

Table 2 – Events Attributes list

NOTE: If an element was not in the original event, the value is empty.
It is recommended to the developer to test against null values.

e) Attributes per event

The tables below depict all the managed events and the expected attributes to be read.

M: Mandatory
O: Optional/ May not be present
S: SIP only (when event is generic)
H: H323 only (when event is generic)
: at least one information is present amongst all O ()

Attribute RRQ URQ ARQ SETUP ALERTING CONNECT DISC OLC OLCACK

transaction M M M M M M M M M

type M M M M M M M M M

sessionId M M M M M M M M M

ip_source O M M M

ip_dest O

e164_source O (*) O (*) O O (*) O (*)

e164_dest O M (*)

h323_source O (*) O (*) O O (*) O (*)

h323_dest O M (*)

privateData O

bandwidth M

callId O M M M M M M

display O O

gateway M MH

ip_ifDestAddress M M

h245Address OH OH

h245MediaChannel O (*) O (*)

h245MediaPort O(*) O (*)

h245MediaControl O (*) O (*)

H245MediaControlPort O (*) O (*)

H245Session M M

H245DataType M M

h323Reason OH

sipReason OS

infoData O OS OS

cseq MS MS MS MS MS MS

locallyInitiated MS

aliasList M

data M M M M

160 – S5000 Reference manual – 2.0-ed1

161 – S5000 Reference manual – 2.0-ed1

Attribute PATH RESV RESVCONF PATHTEAR RESVERR PATHERR

rsvpSession M M M M M M

rsvpTimeValues M M

rsvpSenderTemplate M M

rsvpStyle M M M

rsvpFlowSpec O(*) O(*) O*

rsvpFilterSpec O(*) O(*) O*

Attribute EPLIST SUPSERV SUBSCRIBE

transaction M M M

Type M M M

sessionId M M M

callId M M
infoData M O
aliasList M
supservOperation M

(h450 operation: gkMsg.

CALLTRANSFERIDENTIFY
CALLTRANSFERINITIATE
CALLREROUTING_H4503
DIVERTINGLEGINFO1_H4503
DIVERTINGLEGINFO2_H4503
DIVERTINGLEGINFO3_H4503
DIVERTINGLEGINFO4_H4503
HOLDNOTIFIC_H4504
RETRIEVENOTIFIC_H4504
REMOTEHOLD_H4504
REMOTERETRIEVE_H4504
)

e164_dest M (rerouting number)

h323_source O

h323_dest M

data O O

Attribute INFO INFOOK INFORJ RTIMEOUT DIALOUT IAM CALLCTX

infoData O O O M

callId M M M M M

h323_source M M M M M

e164_destination M

sipReason M M

cseq M M M M

appName M

appDataMsg M

Data O

162 – S5000 Reference manual – 2.0-ed1

Attribute ME_CREATED ME_CREATERR

transaction M M

Type M M

sessionId M M

privateData M
MediaEntity name)

M
 (Media Entity
name)

f) H323 Release reasons

In case of call reject, the table below lists predefined H323 Release reason codes that can be set or
compared.
The reason is set and get from H225.0 message element from Q931 messages emitted/received.
This is contained within msg.h323Reason variable.

H323 Reason codes

H323_NOBANDWIDTH

H323_RESOURCESEXHAUSTED

H323_UNREACHABLEDESTINATION

H323_DESTINATIONREJECTION

H323_INVALIDREVISION

H323_NOPERMISSION

H323_UNREACHABLEGK

H323_GATEWAYRESOURCE

H323_BADFORMATADDRESS

H323_UNDEFINEDREASON

H323_FACILITYCALLDEFLECTION

H323_SECURITYDENIED

H323_CALLEDPARTYNOTREGISTERED

H323_CALLERNOTREGISTERED

H323_NEEDEDFEATURENOTSUPPORTED

Table 3 – H323 reason codes

163 – S5000 Reference manual – 2.0-ed1

g) SIP Release reasons

In case of call reject, the table below lists predefined SIP Release reason codes that can be set or
compared. This is contained within msg.sipReason variable.

SIP Reason codes for Error responses to
INVITE

SIP_BADREQUEST

SIP_UNAUTHORIZED

SIP_PAYMENTREQUIRED

SIP_FORBIDDEN

SIP_NOTFOUND

SIP_METHODNOTALLOWED

SIP_NOTACCEPTABLE

SIP_PROXYAUTHREQUIRED

SIP_REQUESTTIMEOUT

SIP_UNSUPPORTEDMEDIATYPE

SIP_TEMPORARYUNAVAILABLE

SIP_ADDRESSINCOMPLETE

SIP_BUSYHERE

SIP_REQUESTPENDING

SIP_SERVERINTERNALERROR

SIP_NOTIMPLEMENTED

SIP_SERVICEUNAVAILABLE

SIP_SERVERTIMEOUT

SIP_VERSIONNOTSUPPORTED

Table 4 – SIP reason codes

164 – S5000 Reference manual – 2.0-ed1

h) Examples of use

RSVP

/*… RSVP event analysis */

public void processMessage (GKMSG msg, CTX ctx)

{

/*…*/

case gkcomMsg.RSVP_PATH:

 System.out.println(“RSVP path with session=”+msg.rsvpSession);

break;

/*…*/

H323

case gkcomMsg.SETUP:

 int itc=msg.getInformationTransferCapability();

 if (itc != GKMSG.SPEECH && itc!=GKMSG.AUDIO3KHZ)

 System.out.println(“SETUP received for an audio/video call !”);

 else

 System.out.println(“SETUP received for an audio only call !”);

break;

H323 Or SIP

// rejects 5151 named terminal. Accepts all others.

case gkcomMsg.RRQ: /* got a RRQ or a REGISTER */

 if (msg.e164_source.compareTo(“5151”)==0)

 RRQ.reject();

 else

 RRQ.accept();

break;

165 – S5000 Reference manual – 2.0-ed1

7.2.6. Class CTX

This class is related to a M2M-S5000 session of events and is passed to the user service function as a
convenient way to access his private information relative to a session/slot.
As the JGKX applications are multi-threaded ones, the user is able to store and then retrieve any
information he would like associated to every call context.
The CTX allows the user to activate/deactivate a timer dedicated to the slot it has been activated.

In the current JGKX version, a single timer per slot can be activated. As much as the number of slots
concurrent timers can be activated in a single user application.
In the current JGKX version, the number of slots per application is defined at start (start() method) or
set to a default value : 2.

In a call situation (i.e. for the ARQ/SETUP/CONNECT/DISC period), CTX is passed accordingly to the
GK slot used.
The CTX object can be used to act on any call handled within the application:

 forward a call to a new location

 release a call

 transfer a call to a new location

Method Signature Description

setData void setData(Object o) The user stores a set of data, o,
within this context for later retrieval.

getData Object getData() The user is able to retrieve any
information set he might have store
previously with a setData().

setTimer void setTimer(int duration) Activates a timer for the duration
seconds.
At the expiration of the timer, a
TIMEOUT event is generated
according to the slot (CTX object)
where the timer was created.
ProcessMessage() is called with a
TIMEOUT event and the CTX
object.
The timer is automatically removed
after the event.

RemoveTimer void removeTimer() Removes a timer previously
created with setTimer() and before
it has expired.

releaseCall void releaseCall(String callId) Release order for an ongoing call
with callId callIdentifier.
This makes the M2M-S5000-GK to
send a ReleaseComplete message
to the call initiator.
The callId value must be taken out
of ARQ, SETUP, ALERT or
CONNECT messages.

166 – S5000 Reference manual – 2.0-ed1

forwardCall void forwardCall(String newCalled) Release a current NON
CONNECTED call, and re-establish
a new connection with a new called
endpoint.
This can be used in conjunction
with a timer to handle Forward on
no answer actions.
NOTE: This function can be used
to handle ACD like call distribution
on a group of numbers.

transferCall void transferCall(String callingParty,
String calledParty)

Transfer the CTX associated call to
a new called party.
The initial call must be connected.
CallingParty is the CTX call party to
keep in the new call context.
CalledParty is the called endpoint
alias.
CTX reflects the new call between
callingparty and calledParty.
The user must manage the new
call events.
(not available in all versions)

Attributes Type Description

none

Example of use

if (msg.ip_source.compareTo(“10.0.0.8”)==0 {

// store data

USER_CLASS obj = new USER_CLASS();

obj.my_data=”I have seen the address of GW1”;

ctx.setData(obj);

}

// …. Later on

if (msg.type==gkcomMsg.SETUP) {

// retrieve any data

obj = (USER_CLASS)(ctx.getData());

System.out.println(“data=”+obj.my_data);

}

167 – S5000 Reference manual – 2.0-ed1

7.2.7. Class SETUP_REPLY

This class is used to build a SETUP answer that M2M-S5000 will use for its actions.
A SETUP_REPLY object can only be built while in a SETUP event processing.
The SETUP_REPLY object contains all the information for the resulting (and hence modified) SETUP
message M2M-S5000 might forward to the other party.
A SETUP_REPLY object contains all the initial SETUP message values and the developer can modify
some of these via object methods. For example, one can modify the display element with
.changeDisplay() method.

NOTE: a SETUP event is thrown for H323-SETUP or SIP-INVITE messages.

Method Signature Description

changeDisplay void changeDisplay(String s) Modify the the Q931 Display
information element for the
SETUP to be forwarded.
If the display value was empty,
this is used to set the value s.

changeDestination void changeE164Destination(String
s)

Modify the called alias.
The new called number can be
a media entity (to create a half
call).

changeSource void changeE164Source(String s) Modify the callingNumber aliases.
Aliases may b entered separated
with a ‘,’
Example: “12345,John”
Will create a E164 alias=12345
and an H323Id alias =”john”.

changeIPDestination void changeIPDestination(String s) Modify the destination IP address
to send the call.
This can be used to direct a
Gateway or another Gatekeeper
or any H323 terminal
IP address may be entered with :
<ip address>:<tcp_port>
Example: 193.7.1.210:1721

setPrivateData void setPrivateData(String s) Used to set user data that does
not interfere with the underlying
protocol but are conveyed to the
final recipient. A proper
application can then take out and
use these data.

168 – S5000 Reference manual – 2.0-ed1

setNoAutoconnect void setNoAutoconnect() This is used only in case of
media Entity routing, to disable
the automatic connect of the
media entity after the alerting.
With this option, the caller is no
longer connected and hear the
ringing tone until the application
decides to connect this half call.

setAudioOnly void setAudioOnly() Force a call without video and
t120 data capabilities. Only audio
capabilities are kept in H245
mode...

setRSVP void setRSVP(boolean m, int ttl, int
callleg)

Activate/disable RSVP mode for
the current call.
Ttl is the refresh period for the
rsvp path. The callleg is how to
apply rsvp on one or both parties
of the call.
An rsvp managed call takes place
between parties and the S5000 in
the middle. This defines two call
legs.
Call leg is set with:
CALLING_LEG (set on the
source)
CALLED_LEG (set on the
destination)
CALLEDANDCALLING_LEG
(rsvp both sides)

setH323ReleaseReason void setH323ReleaseReason(int
code)

Set an H323 release Reason
code (see table 3) to be returned
to the H323 calling party. (for SIP
party, use the
setSIPReleaseReason())
NOTE: Both setSip… and setH323… can
be set at any time, no matter what
endpoint type if calling.

setSipReleaseReason void setSipReleaseReason(int code) Set a SIP error code (see table 4)
to be returned to the SIP calling
party. (for H323 party, use the
setH323ReleaseReason()).
NOTE: Both setSip… and setH323… can
be set at any time, no matter what
endpoint type if calling.

accept void accept() Send the response to S5000 and
accept the request

reject void reject() Send the response to S5000 and
reject the request.
H323 endpoint:
a ReleaseComplete message
with no special reason is sent to
caller.
SIP endpoint:
A “Forbidden” ERROR Message
is returned to caller.

169 – S5000 Reference manual – 2.0-ed1

control void control() Let the application control the
call. The S5000 will not process
the call.
(as this is the case with accept()
or reject())

The application must later on use
sendAlertingExt(),
sendConnectExt(), etc to proceed
this call side.

Note: For security reason, the
S5000 internally kills calls that
arer establishing for too long.
If no action (alerting, connect) is
made on an incoming call within
the application after the control()
for too long, the call will be
released.

 void control(int delay) Same as previous but with a
grace delay on the call allowing it
to be establishing for the
supplementary delay in seconds.

control(300);
Let the call being stopped for 5 minutes in
case no action is done.

redirect void redirect (
int code,
String newNum)

Send the response to the S5000
for this call: ask for call redirect to
another num.
A SIP answer with code “code” is
directed to the caller asking for a
new call on alias “newNum”.
Example: redirect(302, “56”);

Recommended Code values:
GKMSG.SIP_MULTIPLECHOICES
GKMSG.SIP_MOVEDPERMANENTLY
GKMSG.SIP_MOVEDTEMPORARILY
GKMSG.SIP_USEPROXY
GKMSG.SIP_ALTERNATESERVICE

Attributes Type Description

None

Example of use

/*…*/

case gkcomMsg.SETUP:

SETUP_REPLY sr=new SETUP_REPLY(msg, ctx);

if (msg.e164_destination.compareTo(“1215”)==0 {

// reject this call

sr.reject();

}

else {

sr.changeE164Source(“0123456”); // change calling number

sr.accept(); // let the call proceed

}

}

170 – S5000 Reference manual – 2.0-ed1

Class RRQ_REPLY

This class is used to build a RRQ answer that M2M-S5000 will use for its actions.
A RRQ_REPLY object can only be built while in a RRQ event processing.
The application can choose to reject the endpoint registration request at that point with a reject() or to
continue the registration with an accept().
When the decision is to continue the registration, one can set/modify the endpoint elements with
changeE164() method for example to force a set of dynamic aliases.

NOTE: An RRQ event is thrown for H323-RRQ or SIP-REGISTER messages.

Method Signature Description

changeE164 void changeE164(String s) Replace the first E164 alias found
with this one. The endpoint will
act as if this dynamic alias had
been set in first place.

changeH323 void changeH323Id(String s) Replace the first H323Id alias
found with this one. The endpoint
will act as if this dynamic alias
had been set in first place.

addAlias void addAlias(String s) Add a new alias to this endpoint.
Accoring to the alias syntax, it will
be autiloatically set in the form of
E164 or H323Id.

setInfoData void setInfoData(String body) SIP only
Set a specific body to REGISTER
response.
(can be 200 or another)

setSipErrorCode void setSipErrorCode(int c) SIP only
Set a specific response message
code.
C is an integer 0-16384.
setSipErrorCode(200); means a
200 OK will be replied to the
party.
Any other value can be set.

accept void accept() Send the response to S5000 and
accept the registration.

reject void reject() Reject the registration.

Attributes Type Description

none

171 – S5000 Reference manual – 2.0-ed1

7.2.8. Class ARQ_REPLY

This class is used to build an ARQ answer that M2M-S5000 will use for its actions.
An ARQ_REPLY object can only be built while in a ARQ event processing.

NOTE: only used while receiving H323-ARQ message.

Method Signature Description

changeBandwidth void changeBandwidth(int bw) Modify the the call bandwidth.
In /100 of bit.
Example,
changeBandwidth(1280) means
128 000 bits bandwidth
requested.

Attributes Type Description

none

172 – S5000 Reference manual – 2.0-ed1

7.2.9. Class CONNECT_REPLY

Pertain to the default event package.
This class is used to build a CONNECT answer that M2M-S5000 will use for its actions.
A CONNECT_REPLY object can only be built while in a CONNECT event processing.
The application can choose to stop the call at that point with a reject() - a ReleaseComplete H323 will
be generated in the H323 call legs- or to continue the call with an accept() or avoid the S5000 doing
any action by calling control() - Generic Gateway Controler API -.
When the decision is to continue the call, one can set/modify the display element with
.changeDisplay() method in order to display useful information to the caller.
When the decision is to control the call, the Generic Gateway Controler functions must be called later
on for ringing, connect, release the call, etc.

Method Signature Description

changeDisplay void changeDisplay(String s) Modify the the Q931 Display
information element for the
CONNECT to be forwarded.
If the display value was empty,
this is used to set the value s.

setJoinCallId Void setJoinCallId(String callId) In case of half call management,
use this to request a connect to
be forwarded to a waiting half call
(see SETUP_REPLY). As soon
as the two half calls have opened
their media channels, they are
joined and talked together.
CallId is the H323-CallIdentifier of
the other call to connect to.
This can have been saved just
before a startCall() or within the
SETUP event of this other call.

accept void accept() Send the response to S5000 and
proceed the connect.
H323 and SIP.

reject void reject() Make the S5000 rejecting the call.
The caller and called parties are
released.
H323 and SIP.

control void control() Let the application control the
call. The S5000 will not process
the call.
(as this is the case with accept()
or reject())

The application must later on use
sendAlertingExt(),
sendConnectExt(), etc to proceed
this call side.
H323 and SIP.

Attributes Type Description

none

173 – S5000 Reference manual – 2.0-ed1

7.2.10. Class OLC_REPLY

This is to be used within the H245 events package. The developer must add a
jgkx.addEventPackage(H245) to activate this event.
This class is used to build an OpenLogicalChannel answer that M2M-S5000 will use for its actions.
An OLC_REPLY object can only be built while in an OLC event processing.
The application can modify the media/RTP/RTCP addresses at that point.

Method Signature Description

changeChannelAddress void changeChannelAddress (String
addr)

Modify the the RTP and RTPC
addresses

changeMediaChannelPort void changeMediaChannelPort (int p) Modify the the RTP port.
The p port must be even.
The p+1 port will be set for the
RTCP channel.

Attributes Type Description

none

174 – S5000 Reference manual – 2.0-ed1

7.2.11. Class OLCACK_REPLY

This is to be used within the H245 events package. The developer must add a
jgkx.addEventPackage(H245) to activate this event.
This class is used to build an OpenLOgicalChannelAck answer that M2M-S5000 will use for its
actions.
An OLCACK_REPLY object can only be built while in a OLCACK event processing.
The application can modify the advertised media/RTP/RTCP addresses at that point. The media route
within the network can be completely controlled and separated from the signaling flow with these
commands.

Method Signature Description

changeChannelAddress void changeChannelAddress (String
addr)

Modify the the RTP and RTPC
addresses

changeMediaChannelPort void changeMediaChannelPort (int p) Modify the the RTP port.
The p port must be even.
The p+1 port will be set for the
RTCP channel.

Attributes Type Description

none

7.2.12. Class SUBSCRIBE_REPLY

Specific SIP signaling event response.
Pertain to the default event package.
This is used to acknowledge a SUBSCRIBE event.
A SUBSCRIBE_REPLY object can only be built while in a SUBSCRIBE event processing.

Method Signature Description

accept void accept() Send the response to S5000: the
subscription is registered within
the S5000 and an OK message
sent to the originator.

reject void reject() Send the response to S5000 and
instruct not to ignore the request.

Attributes Type Description

none

175 – S5000 Reference manual – 2.0-ed1

7.2.13. Class templateEmbedService

This class is used to build or modify embedded service. All fields of embedded service are
represented as private attributes of templateService

Method Signature Description

getName String getName()

Accessors allow to get /set
“Name” of embedded service

setName void setName(String name)

getSourceMask

String getSourceMask() Accessors allow to get /set
“Source Mask Mask” of
embedded service setSourceMask

void setSourceMask(String mask)

getSourceFwd

String getSourceFwd() Accessors allow to get /set
“Forwarded source” of
embedded service setSourceFwd

void setSourceFwd(String fwdSrce)

getDestinationMask

String getDestinationMask() Accessors allow to get /set
“Destination Mask” of embedded
service setDestinantionMask

void setdestinationMask(String fwd)

getDestinationFwd

String getDestinationFwd()

Accessors allow to get /set
“Forwarded destination” of
embedded service setDestinationFwd

void setDestinationFwd(String fwd)

getAppName

String getAppName() Accessors allow to get /set
“Application name” of embedded
service setAppName

void setAppName(String name_appli)

getSipAccount

String getSipAccount() Accessors allow to get /set “Sip
account mask” of embedded
service setSipAccount

void setSipAccoun(String accMask)

getTYPE

String getTYPE() Accessors allow to get /set “Type”
of embedded service

setTYPE

void setTYPE(String type)

getCodecList

String getCodecList() Accessors allow to get /set “Sip
Codecs mask” of embedded
service setCodecList

void setCodecList(String codecs)

getRoute

String getRoute() Accessors allow to get /set
“Route ” of embedded service

setRoute

void setRoute(String route_name)

getDestADDR

String getDestADDR() Accessors allow to get /set
“Target” of embedded service

setDestADDR

void setDestADDR(String addr)

getMediaFile

String getMediaFile() Accessors allow to get /set
“Media file” of embedded service

setMediaFile

void setmediaFile(String media_nom)

getPosition

int getPosition() Accessors allow to get /set
“Position” of embedded service

setPosition

void setPosition(int pos)

176 – S5000 Reference manual – 2.0-ed1

7.2.14. Class templateRoute

This class is used to build or modify route. All fields of route are represented as private attributes of
templateRoute

Method Signature Description

getName

String getName() Accessors allow to get /set
“Route name” of route

setName

void setName(String name)

getListTrunks

String getListTrunks() Accessors allow to get /set “list of
Trunks list ” of route

setListTrunks

void setListTrunks(String trink_list)

getMode

String getMode() Accessors allow to get /set
“Trunks mode” of route

setMode

void setMode(String mode)

getCodeErr

String getCodeErr() Accessors allow to get /set
“Err.codes to cont.” of route

setCodeErr

void setCodeErr(String err)

177 – S5000 Reference manual – 2.0-ed1

7.2.15. Class templateTrunk

This class is used to build or modify trunk. All fileds of trunk are represented as private attributes of
templateTrunk

Method Signature Description

getName

String getName() Accessors allow to get /set “Trunk
name ” of trunk

setName

void setName(String name)

getTarget

String getTarget() Accessors allow to get /set
“Targets” of trunk

setTarget

void setTarget(String targets)

getCodecMask

String getCodecMask() Accessors allow to get /set
“Codecs filtering” of trunk

setCodecMask

void setcedecMask(String codec)

getTimer

int getTimer() Accessors allow to get /set “No-
Answer timer [sec] (0=infinite)” of
trunk setTimer

void setTimer(int time)

getAlgo

String getAlgo() Accessors allow to get /set
“Algorithm” of trunk

setAlgo

void setAlgo(String algo)

getMaxCalls

int getMaxCalls() Accessors allow to get /set “Max
call (Empty for unlimited)” of trunk

setMaxCalls

void setMaxCalls(int mxCalls)

getNewDestination

String getNewDestination() Accessors allow to get /set “New
destination alias” of trunk

setNewDestination

void setNewcalls(String newdest)

178 – S5000 Reference manual – 2.0-ed1

7.2.16. Class templateProvision

This class is used to build or modify endpoint Profile. All fields of endpoint are represented as private
attributes of templateProvision

Method Signature Description

getName

String getName() Accessors allow to get /set “Name” of
endpoint

setName

void setName(String name)

getAlias

String getAlias() Accessors allow to get /set “Alias” of
endpoint

setAlias

void setAlias(String alias)

getMac

String getMac() Accessors allow to get /set “Mac
address” of endpoint

setMac

void setMac(String mac)

getDisplay

String getDisplay() Accessors allow to get /set “Display”
of endpoint

setDisplay

void setDisplay(String display)

getPhoneType

String getTypePhone() Accessors allow to get /set “Auto
provision” of endpoint

setPhoneType

void setTypePhone(String type)

getRestrictions

String getRestrictions() Accessors allow to get /set “Dialout
Restrictions” of endpoint

setRestrictions

void setRestrictions(String rest)

getIPAddr

String getIPAddr() Accessors allow to get /set “IP addr
(if static)” of endpoint

setIPAddr

void setIPAddr(String ip)

getMask

String getMask() Accessors allow to get /set “Mask (if
static)” of endpoint

setMask

void setMask(String mask)

getGateway

String getGateway() Accessors allow to get /set “Gateway
(if static) ” of endpoint

setGateway

void seGateway(String gateway)

getForwardType

String getForwardType() Accessors allow to get /set “Forward
type” of endpoint

setForwardType

void setForwardType()

getForwardNumber

String getForwardNumber() Accessors allow to get /set “Forward
to other destination” field of
endpoint setForwardNumber

void setForwardNumber(String num)

getForwardMsg

boolean getForwardMsg() Accessors allow to get /set “Forward
to messaging” field of endpoint

setForwardMsg

void setForwardMsg()

getForwardTime

String getForwardTime() Accessors allow to get /set “Forward
NoAnswer timer” field of endpoint

setForwardTime

void setForwardTime(int time)

179 – S5000 Reference manual – 2.0-ed1

Method Signature Description

getCTone

String getCTone() Accessors allow to get /set
“Country Tone” of endpoint

setCTone

void setCTone(String tone)

getLanguage

int getLanguage() Accessors allow to get /set
“Language” of endpoint

setLanguage

void setLanguage(int lang)

getEthCx

int getEthCx() Accessors allow to get /set
“Ethernet connection” of
endpoint setEthCx

void setEthCx(int eth)

getAccountLogin

String getAccountLogin() Accessors allow to get /set “Sip
authentication login ” of
endpoint setAccountLogin

void setAccountLogin(String login)

getAccountPass

String getAccountPass()
Accessors allow to get /set “Sip
authentication password” of
endpoint

setAccountPass

void setAccountPass(String pass)

getLines

int getLines()
Accessors allow to get /set
“Number of lines” of endpoint setLines

void setLines(int line)

getSipCallingPrefix

String getSipCallingPrefix() Accessors allow to get /set
“SipCallingPrefix for xfe” field
of endpoint setSipCallingPrefix

void setSipcallingPrefix(String prefix)

getSharedLines

String getSharedLines() Accessors allow to get /set
“Shared line” of endpoint

setSharedLines

void setSharedLines(String line)

getFunctionTouches

String getFunctionTouches() Accessors allow to get /set
“F1,F2…” of endpoint

setFunctionTouches

void setFunctionTouches(String touch)

getWebPass

String getWebPass() Accessors allow to get /set
“Web user password” of
endpoint setWebPass

void setWebPass(String pass)

getPtime

int getPtime() Accessors allow to get /set
“Forced G729 ” of endpoint

setPtime void setPtime(int ptime)

getDistingushTone

boolen getDistingushTone() Accessors allow to get /set
“Distinguished melody for
external calls” of endpoint setDistingushTone

void setDistingushTone(boolean tone)

getSupervisedCall

boolean getSupervisedCall() Accessors allow to get /set “Sip
call supervised” of endpoint

setSupervisedCall

void setSupervisedCall(boolean super)

getTimeZone

int getTimeZone() Accessors allow to get /set
“Timezone” of endpoint

setTimeZone

void setTimeZone(int time)

180 – S5000 Reference manual – 2.0-ed1

Method Signature Description

getDhcp

boolean getDhcp() Accessors allow to get /set
“DHCP” of endpoint

setDhcp

void setDhcp(boolean d)

getVlan

boolean getVlan() Accessors allow to get /set
“VLANs ” of endpoint

setVlan

void setVlan(boolean vl)

getVlanVoice

int getVlanVoice() Accessors allow to get /set
“Voice” of endpoint

setVlanVoice

void setVlanVoice(int voice)

getVlanData

int getVlanData() Accessors allow to get /set “Data”
of endpoint

setVlanData

void setVlanData(int data)

getCallWaitTone

boolean getCallWaitton,e() Accessors allow to get /set “Call
Waiting Tone disabled” of
endpoint setCallWaitTone

void setCallWaittone(boolean w)

getGroup

String getGroup() Accessors allow to get /set
“Group” of endpoint

setGroup

void setGroup(String gr)

getMelody

int getMelody() Accessors allow to get /set
“Melody” of endpoint

setMelody

void setMelody(int melo)

181 – S5000 Reference manual – 2.0-ed1

7.2.17. ECMA-323 Package

For SIPProxy entities working with CSTA/SIP, a set of classes and functions ease the protocol.
In this model, uaCSTA is directly implemented as a B2BUA in the JGKXAPI.
The implementation allows to develop uaCSTA aware endpoints or server applications.

The JGKXAPI comprises a special java package to manage the uaCSTA XML elements in requests
and responses over SIP, com.m2msoft.uaCSTA.

Fig.75 ua CSTA package use for PABX communication

The following classes apply on the transported data on the INFO methods.

The table below shows the uaCSTA message groups and the support level in the M2Msoft uaCSTA
package.

Group Example Supported

Call Control ClearConnection, … Yes

Physical Phone Features GetSpeakerVolume, … No

Logical Phone Features GetDoNotDisturb, … No

Monitoring Services & Events MonitorStart, … Yes – Only voice can be set

Snapshot services SnapshotDevice, … No

Discovery & System status Get CSTA Features No

Classes and attributes are named as the ECMA-323 standard with ‘Request’ and ‘Response’
appended. A generic CSTAError class is defined for the negative responses.
The classes contain simple attributes for the elementary unique elements and object attributes for the
structured fields. These lead to additional classes within the package.

182 – S5000 Reference manual – 2.0-ed1

Package com.m2msoft.uaCSTA

CSTAMessage (Interface)
All subsequent messages implements this interface.

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Call
A generic class to store call info. This is used in call control requests and responses

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callId String M See [ECMA]

_deviceID String M See [ECMA]

CSTAErrorResponse
A generic class for negative responses.

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_operation String M See [ECMA]

183 – S5000 Reference manual – 2.0-ed1

Package com.m2msoft.uaCSTA.callcontrol

AlternateCallRequest
This is used to build or decode an AlternateCallRequest message to hold/retrieve an existing call.

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_heldCall Call M See [ECMA]

_activeCall Call M See [ECMA]

AlternateCallResponse
This is used to build or decode an AlternateCallResponse, positive response.

Method Signature Description

build String build() Encode an AlternateCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

none

AnswerCallRequest
This is used to build or decode an AnswerCallRequest message to answer an alerting call.

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object .
Return false when decoding fails

Attributes Type M/O Description

_callToBeAnswered Call M See [ECMA]

184 – S5000 Reference manual – 2.0-ed1

AnswerCallResponse
This is used to build or decode an AnswerCallResponse, positive response.

Method Signature Description

build String build() Encode an AlternateCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

none

ClearConnectionRequest
This is used to build or decode a ClearConnectionRequest message to clear acall.

Method Signature Description

build String build() Encode an AlternateCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_connectionToBeCleared Call M See [ECMA]

ClearConnectionResponse
This is used to build or decode an AnswerCallResponse, positive response.

Method Signature Description

build String build() Encode an AlternateCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

none

185 – S5000 Reference manual – 2.0-ed1

ConsultationCallRequest
This is used to build or decode a ConsultationCallRequest message to hold a current call and start a
new one.

Method Signature Description

build String build() Encode a ConsultationCall
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_existingCall Call M Call to put on hold

_consultedDevice String M New number to dial

ConsultationCallResponse
This is used to build or decode a ConsultationCallResponse, positive response.

Method Signature Description

build String build() Encode an
ConsultationCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_initiatedCall Call M The new call parameters

DeflectCallRequest
This is used to build or decode a DeflectCallRequest message to move a call top a different
destination.

Method Signature Description

build String build() Encode a DeflectCall structured
message into an uaCSTA XML
string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callToBeDiverted Call M Call to be diverted

_newDestination String M New sip uri

186 – S5000 Reference manual – 2.0-ed1

DeflectCallResponse
This is used to build or decode an DeflectCallResponse, positive response.

Method Signature Description

build String build() Encode an
ConsultationCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none Call M The new call parameters

GenerateDigitsRequest
This is used to build or decode a GenerateDigitsRequest message to send DTMF on a call from the
UA.

Method Signature Description

build String build() Encode a GenerateDigitRequest
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_connectionToSendDigits Call M Call to apply action

_charactersToSend String M DTMF string to send

GenerateDigitsResponse
This is used to build or decode an GenerateDigitsResponse, positive response.

Method Signature Description

build String build() Encode an
ConsultationCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

187 – S5000 Reference manual – 2.0-ed1

HoldCallRequest
This is used to build or decode a HoldCallRequest message to put a call on hold at a UA.

Method Signature Description

build String build() Encode a HoldCallRequest
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callToBeHeld Call M Call to apply action

HoldCallResponse
This is used to build or decode a HoldCallResponse, positive response.

Method Signature Description

build String build() Encode an HoldCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

MakeCallRequest
This is used to build or decode a MakeCallRequest message to start a call from this UA.

Method Signature Description

build String build() Encode a MakeCallRequest
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callingDevice String M SIP URI of calling

_calledDevice String M SIP URI of called device

autoOriginate int M PROMPT, DONOTPROMPT

188 – S5000 Reference manual – 2.0-ed1

MakeCallResponse
This is used to build or decode an GenerateDigitsResponse, positive response.

Method Signature Description

build String build() Encode an MakeCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callingDevice Call M

ReconnectCallRequest
This is used to build or decode a ReconnectCallRequest message to clear a specified call and
retrieves a held call at the UA.

Method Signature Description

build String build() Encode a ReconnectCallRequest
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_activeCall Call M Call to clear

_heldCall Call M Call to retrieve

ReconnectCallResponse
This is used to build or decode a ReconnectCallResponse, positive response.

Method Signature Description

build String build() Encode an
ConsultationCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

189 – S5000 Reference manual – 2.0-ed1

RetrieveCallRequest
This is used to build or decode a RetrieveCallRequest message to retrieve a call that was on hold.

Method Signature Description

build String build() Encode a RetrieveCallRequest
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_callToBeRetrieved Call M Call to apply action

RetrieveCallResponse
This is used to build or decode a RetrieveCallResponse positive response.

Method Signature Description

build String build() Encode a RetrieveCallResponse
structured message into an
uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

SingleStepTransferCallRequest
This is used to build or decode a SingleStepTransferCallRequest message to transfer a call from the
UA to a party.

Method Signature Description

build String build() Encode the request structured
message into an uaCSTA XML
string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_activeCall Call M Call to transfer

_transferedTo String M New number, sip uri or E164

190 – S5000 Reference manual – 2.0-ed1

SingleStepTransferCallResponse
This is used to build or decode an SingleStepTransferCallResponse, positive response.

Method Signature Description

build String build() Encode the response structured
message into an uaCSTA XML
string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

TransferCallRequest
This is used to build or decode a TransferCallRequest message to merge an held and an activeCall on
this UA.

Method Signature Description

build String build() Encode the request structured
message into an uaCSTA XML
string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_heldCall Call M Call to retrieve and merge

_activeCall Call M To merge with heldcall

TransferCallResponse
This is used to build or decode a TransferCallResponse, positive response.

Method Signature Description

build String build() Encode the response structured
message into an uaCSTA XML
string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

191 – S5000 Reference manual – 2.0-ed1

Package com.m2msoft.uaCSTA.monitor

MonitorStartRequest
This is used to build or decode a MonitorStartRequest message to ask UA for events.

Method Signature Description

build String build() Encode the structured message
into an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_monitorObject String M URI of UA to monitor

_monitorType String M Set to device. / Read Only at that time

requestedMonitorMediaClass int M Bit mask for VOICE|IM. Voice only
supported

MonitorStartResponse
This is used to build or decode a MonitorStartResponse, positive response.

Method Signature Description

build String build() Encode a structured message into
an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_monitorCrossRefId String M Unique id to be found in all events sent from now

MonitorStopRequest
This is used to build or decode a MonitorStopRequest message to ask UA for events.

Method Signature Description

build String build() Encode the structured message
into an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

192 – S5000 Reference manual – 2.0-ed1

Attributes Type M/O Description

_monitorCrossRefId String M As given in the MonitorStartResponse from
the UA

_monitorType String M Set to device. / Read Only at that time

requestedMonitorMediaClass int M Bit mask for VOICE|IM. Voice only
supported

MonitorStopResponse
This is used to build or decode a MonitorStopResponse, positive response.

Method Signature Description

build String build() Encode a structured message into
an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_none M

Package com.m2msoft.uaCSTA.events

This package contains events to send/receive. (only when a monitor has been requested on the UA)

DeliveredEvent
This is used to track alerting of calls.

Method Signature Description

build String build() Encode the structured message
into an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_monitorCrossRefId String M Always/see MonitorStartResponse

_originatedConnection Call O Call IN PROGRESS

_callingDevice String (deviceId) O

_calledDevice Call O

_alertingDevice String (deviceId) O Call RINGING

_establishedConnection Call O Call CONNECTED

_answeringDevice String (deviceId)

193 – S5000 Reference manual – 2.0-ed1

EstablishedEvent
This is used to track connection of calls.

Method Signature Description

build String build() Encode the structured message
into an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_monitorCrossRefId String M Always/see MonitorStartResponse

_establishedConnection Call O Call CONNECTED

_callingDevice String (deviceId) O

_calledDevice Call O

_answeringDevice String (deviceId) O

ConnectionClearedEvent
This is used to track release of calls.

Method Signature Description

build String build() Encode the structured message
into an uaCSTA XML string

decode boolean decode(String data) Decode an XML buffer in a
structured object.
Return false when decoding fails

Attributes Type M/O Description

_monitorCrossRefId String M Always/see MonitorStartResponse

_droppedConnection Call O Call RELEASED

_callingDevice String (deviceId) O

_calledDevice Call O

194 – S5000 Reference manual – 2.0-ed1

7.2.18. Mini Call Center Development

With the S5000 and the GKXAPI, it is easy to build your own call center.
Let's see the main process.

Fig.76 simple call center design

This figure depicts a small capacity call center with 3 agents (gathered in one waiting queue) and a
call waiting queue of 1 call.

To make such an application, one must define first the number of Media Entity that we need. Here the
number is 7. 3 to connect the agents simultaneously, 3 to connect the agents to their parties and 1 for
a waiting call in queue.

The pages below contain instructions and indications on such an application skeleton. This is not
designed as a complete program but rather it shows how to implement a simple Automatic Call
Distribution Automaton.

Step 1
Name these Media Entity as follow:
in1, in2, in3, in4 for the incoming calls Media Entity
ag1, ag2, ag3 for the agents.

Step 2
Define (and record) two announcements:
waitcall.sw for the customers
incomingcall.sw for the agents

195 – S5000 Reference manual – 2.0-ed1

Step3
Associate these announcements to the media entities in the S5000 configuration.

As an option one can define a supplementary Media Entity and a route (EmbeddedService) to it in
case of unavailable channels on the call center.

Step 4
The application:
As we need to serve 4 simultaneous input calls and 3 simultaneous outgoing calls, we need 7 slots.
We need to define: 7 callIds and 7 state variables to track the MediaEntity pool availability.

String[] mediaIn=new String[4]; // mediaEntity names

String[] mediaAg= new String[3];

int[] mediaInState=new int[4]; // mediaEntity states

int[] mediaAgState=new int[3];

String agE164 = new String[3]; // agents phone numbers

String[] agCallIds = new String[3]; // store all agents calls

String currentAgCallId= » »; // current callref to join current searched agent

String currentWaitCallId= » »; // current customer callref. waiting in queue

int currentWaitME=-1;

int currentAgME=-1; //current MediaEntity used to contact agent

void initMedia()

{

 mediaIn[0]= »in0 »;

 mediaIn[1]= »in1 »;

 mediaIn[2]= »in2 »;

 mediaIn[3]= »in3 »;

 mediaAg[0]= »ag0 »;

 mediaAg[1]= »ag1 »;

 mediaAg[2]= »ag2 »;

 mediaInState[0]=0; // free

 mediaInState[1]=0; // free

 mediaInState[2]=0; // free

 mediaInState[3]=0; // free

196 – S5000 Reference manual – 2.0-ed1

 mediaAgState[0]=0; // free

 mediaAgState[1]=0; // free

 mediaAgState[2]=0; // free

 agE164[0]= »515 »;

 agE164[1]= »516 »;

 agE164[2]= »517 »;

 // no calls yet

 agCallIds[0]= » »;

 agCallIds[1]= » »;

 agCallIds[2]= » »;

}

public void processMessage(......)

{

// Incoming call management

case SETUP:

 // get available waiting mediaEntity

 int n=getFreeMediaIn();

 // check if n==-1 => no input channel, release call with setup_reply.reject()

 setup_reply.changeDestination(mediaIn[n]);

 currentWaitME=n; // save for later the mediaentity name

 currentWaitCallId=msg.callId;

 setup_reply.accept();

 mediaInState[n]=1;// mark as locked

 // get available agent

 int a=getFreeMediaAg();

 if (a>=0) {

 // there is an agent available, startCall to this agent number

 currentAgCallId=_api.getCallId();

 currentAgME=a;

 mediaAgState[a]=1; // locked agent

 agCallIds[a] = currentAgCallId; // save callid

 startCall(currentAgCallId, agE164[a], null, mediaAg[a]);

 }

 else {

 // we cannot call an agent now, wait in queue !

 }

 break;

case OLCACK :

 // check if agent

 if (msg.callId.compareTo(currentAgCallId)==0) {

 // agent called connected now

 // join the calls

 _api.joinCall(mediaIn[currentWaitME], mediaAg[currentAgME]);

 currentAgME=-1; // no more agent search for now

 }

 break;

case DISC:

 // check if an agent is released

 if (msg.callId.compareTo(agCallIds[0]==0) {

 // agent 0 is now free

 agCallIds[0]= » »;

 mediaAgState[0]=0; // agent is free

 // if we need to start call, call this agent now !

 if (currentAgME==-1 && currentWaitME!=-1) {

 // search is needed ! Start call here

 // there is an agent available, startCall to this agent number

 currentAgCallId=_api.getCallId();

197 – S5000 Reference manual – 2.0-ed1

 currentAgME=0;

 mediaAgState[0]=1; // locked agent

 agCallIds[0] = currentAgCallId; // save callid

 startCall(currentAgCallId, agE164[0], null, mediaAg[0]);

 }

 }

 else if (msg.callId.compareTo(agCallIds[1]==0) {

 // agent 1 is now free

 agCallIds[1]= » »;

 mediaAgState[1]=0; // agent is free

 // if we need to start call, call this agent now !

 if (currentAgME==-1 && currentWaitME!=-1) {

 // search is needed ! Start call here

 // there is an agent available, startCall to this agent number

 currentAgCallId=_api.getCallId();

 currentAgME=1;

 mediaAgState[1]=1; // locked agent

 agCallIds[1] = currentAgCallId; // save callid

 startCall(currentAgCallId, agE164[1], null, mediaAg[1]);

 }

 }

 else if (msg.callId.compareTo(agCallIds[2]==0) {

 // agent 2 is now free

 agCallIds[2]= » »;

 mediaAgState[2]=0; // agent is free

 // if we need to start call, call this agent now !

 if (currentAgME==-1 && currentWaitME!=-1) {

 // search is needed ! Start call here

 // there is an agent available, startCall to this agent number

 currentAgCallId=_api.getCallId();

 currentAgME=2;

 mediaAgState[2]=1; // locked agent

 agCallIds[2] = currentAgCallId; // save callid

 startCall(currentAgCallId, agE164[2], null, mediaAg[2]);

 }

 }

 else {

 // currentWaitCallId : customer waiting has released

 if (msg.callId.compareTo(currentWaitCallId)==0) {

 // waiting queue is now free

 currentWaitCallId= » »;

 mediaInState[currentWaitME]=0; // in free

 currentWaitME=-1;

 }

 }

break;

}

198 – S5000 Reference manual – 2.0-ed1

7.3. C API (GKXAPI)

7.3.1. How does it work?

The programmer needs the following files to work with:

libgkxapi.a
gkx.h

This contains all necessary functions and defines to develop and run an application towards M2M-
S5000.

7.3.2. My HELLO WORD

This chapter details a complete call management application and makes use of the functions and
values changes.

 Due to the evolving nature of the API, we cannot guarantee that the code depicted here is
exactly working with your API version; but we deliver up to date source sample with all our
API packages.
Ask your M2MSOFT representative for the working code sample.

Application specifications

My Hello World is a sample application that perform the following:

 Connect to S5000 and initialize 5 contexts.

 Display received event messages
 Case RRQ

E164_Source=1001 Reject
E164_Source=1002 Change to 1003 + 1004 and Accept
else Accept

 Case ARQ (originated from caller)
E164_Destination=2001 Reject
E164_Destination=2002 Change to 2003 and Accept
else Accept

 Case ARQ (Originated from called) Always accept
 Case SETUP

E164_Destination=4001 Reject
E164_Destination=4002

Change Destination to 4003
Change Display for « coucou »
Private Data field = « myDatas »
Accept

else Accept
 Case CONNECT Console display « Connection CallID <callId> »
 Case DATA

When PrivateData equals « PleaseURQ » Send GK an URQ for IP=1.1.1.1
When PrivateData equals « PleaseRelease » Send GK RELEASE of the call whose
CallId=abcd0000ffff

199 – S5000 Reference manual – 2.0-ed1

Step by step programming

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gkx.h"

#define VERSION "1.5"

int process(GKMSG *, CTX *);

int main(int argc, char *argv[])

{

 char IPADD[50]="10.162.56.151";

 int PORT=16000;

 int i;

 bool traceMsg=false;

 printf("Client test API - Version %s\nGKXAPI - Version

%s\n\n",VERSION,GKXAPI_VERSION);

 for (i=1;i<argc;i++) {

 if (strcmp(argv[i],"-g")==0) {

 if (argc-1<++i) {

 i=-1;

 break;

 }

 strcpy(IPADD,argv[i]);

 }

 else if (strcmp(argv[i],"-p")==0) {

 if (argc-1<++i) {

 i=-1;

 break;

 }

 PORT=atoi(argv[i]);

 }

 else if (strcmp(argv[i],"-t")==0) traceMsg=true;

 else {

 i=-1;

 break;

 }

 }

 if (i==-1) {

 printf("Syntax : %s [options]\n\n"

 "Options :\n"

 " -g <gatekeeper (or host) ip address>\n"

 " -p <port>\n"

 " -t (for API messages trace)\n\n",argv[0]);

 exit(1);

 }

 GKX *gkx=new GKX(traceMsg);

 if (gkx->Open(IPADD,PORT,5)==-1) {

 printf("Failed to connect to %s:%d\n",IPADD,PORT);

 return 0;

 }

 gkx->start(5);

 gkx->addCallBack(process);

 gkx->ReadWriteDatas();

 //gkx->Close();

 return 0;

}

200 – S5000 Reference manual – 2.0-ed1

int process(GKMSG *gkMsg, CTX *ctx)

{

 char strMsgType[20];

 switch(gkMsg->type) {

 case MSG_RRQ: strcpy(strMsgType,"MSG_RRQ"); break;

 case MSG_URQ: strcpy(strMsgType,"MSG_URQ"); break;

 case MSG_ARQ: strcpy(strMsgType,"MSG_ARQ"); break;

 case MSG_aRQ: strcpy(strMsgType,"MSG_aRQ"); break;

 case MSG_DRQ: strcpy(strMsgType,"MSG_DRQ"); break;

 case MSG_LRQ: strcpy(strMsgType,"MSG_LRQ"); break;

 case MSG_RAI: strcpy(strMsgType,"MSG_RAI"); break;

 case MSG_SETUP: strcpy(strMsgType,"MSG_SETUP"); break;

 case MSG_CONNECT: strcpy(strMsgType,"MSG_CONNECT"); break;

 case MSG_BUSY: strcpy(strMsgType,"MSG_BUSY"); break;

 case MSG_DISC: strcpy(strMsgType,"MSG_DISC"); break;

 case MSG_DATA: strcpy(strMsgType,"MSG_DATA"); break;

 case MSG_UNKNOWN: strcpy(strMsgType,"MSG_UNKNOWN"); break;

 }

 printf("type=%s\n"

 "transaction=%s\n"

 "callId=%s\n"

 "sessionId=%s\n"

 "ip_source=%s\n"

 "e164_source=%s\n"

 "h323_source=%s\n"

 "ip_destination=%s\n"

 "e164_destination=%s\n"

 "h323_destination=%s\n"

 "display=%s\n"

 "techPrefix=%s\n"

 "bandwidth=%s\n"

 "outOfResource=%d\n"

 "gateway=%d\n"

 "data=%s\n\n",

 strMsgType,

 gkMsg->transaction,

 gkMsg->callId,

 gkMsg->sessionId,

 gkMsg->ip_source,

 gkMsg->e164_source,

 gkMsg->h323_source,

 gkMsg->ip_destination,

 gkMsg->e164_destination,

 gkMsg->h323_destination,

 gkMsg->display,

 gkMsg->techPrefix,

 gkMsg->bandwidth,

 gkMsg->outOfResource,

 gkMsg->gateway,

 gkMsg->data);

 RRQ_REPLY *RRQ=new RRQ_REPLY(gkMsg, ctx);

 ARQ_REPLY *ARQ=new ARQ_REPLY(gkMsg, ctx);

 aRQ_REPLY *aRQ=new aRQ_REPLY(gkMsg, ctx);

 SETUP_REPLY *setup=new SETUP_REPLY(gkMsg, ctx);

 switch(gkMsg->type) {

 case MSG_DATA:

 if (strcmp(gkMsg->data,"PleaseURQ")==0) ctx->sendURQ("1.1.1.1");

 else if (strcmp(gkMsg->data,"PleaseRelease")==0)

ctx->releaseCall("abcd0000ffff");

 break;

201 – S5000 Reference manual – 2.0-ed1

 case MSG_RRQ:

 if (strcmp(gkMsg->e164_source,"1001")==0) RRQ->reject();

 else if (strcmp(gkMsg->e164_source,"1002")==0) {

 RRQ->changeE164("1003,1004");

 RRQ->accept();

 }

 else RRQ->accept();

 break;

 case MSG_ARQ:

 if (strcmp(gkMsg->e164_destination,"2001")==0) ARQ->reject();

 else if (strcmp(gkMsg->e164_destination,"2002")==0) {

 ARQ->changeE164Destination("2003");

 ARQ->reject();

 }

 else ARQ->accept();

 break;

 case MSG_aRQ:

 aRQ->accept();

 break;

 case MSG_SETUP:

 if (strcmp(gkMsg->e164_destination,"4001")==0) setup->reject();

 else if (strcmp(gkMsg->e164_destination,"4002")==0) {

 setup->changeE164Destination("4003");

 setup->changeDisplay("coucou");

 setup->setPrivateData("myDatas");

 setup->accept();

 }

 else setup->accept();

 break;

 case MSG_CONNECT:

 printf("Connection callId %s\n",gkMsg->callId);

 break;

 }

 return 1;

}

202 – S5000 Reference manual – 2.0-ed1

7.3.3. Classes

The classes used within GKXAPI are:

Class / Interface Description

GKX The main class used to connect to M2M-S5000 and arm callback
management.

GKMSG The event structure passed to the user function.
The user can access and modify a number of attributes issued from
the H323 or SIP message.

CTX As a multi-threaded application, a context specific object is handled
to the user method as well.
Used to store data and to send commands for the call (Release)

RRQ_REPLY Used to activate any change, modifiy, accept and reject of H323
RRQ or SIP REGISTER event

ARQ_REPLY Used to activate any change, modifiy, accept and reject of initial ARQ
event

aRQ_REPLY Used to activate any change, modifiy, accept and reject of final ARQ
event

SETUP_REPLY Used to activate any change, modifiy, accept and reject of SETUP or
SIP INVITE event

CONNECT_REPLY Used to accept or reject a CONNECT event. Some fields can be set
at that time, as the display value.

203 – S5000 Reference manual – 2.0-ed1

7.3.4. Class GKX

This class manages the connection with the S5000 and the global internal scheduling of events and
callbacks. There are general functions and half calls management functions.

Method Signature Description

GKX GKX() Constructor for main object GKX

Open int Open(char *ip, int port,
int timer)

Open a connection to a M2M-S5000 at the ip address
and TCP port. The timer parameter is the timeout
TCP connection.
Return 0=success, -1=failed

Close void Close() Close connection to 5000.

ReadWriteDatas void ReadWriteDatas() Main loop process
addCallBack void

addCallBack(process)

callback function:
void process (GKMSG *,
CTX *)

Provide the process() method as callback function to
receive events.

start void start(int nbSlots) Initiate a number of contexts with GK.
 void start(int nbSlots,

char * appName)
Initiate contexts and application name.

setForcedRoute void
setForcedRoute(bool
forced)

When forced is TRUE all the call are forwarded to this
application, no embeddedService is needed.

addListen int addListen(int pkg) Add an event set to be handled within the application.
Standard values are :
- H245
- RSVP
- INFO-CSTA
- SUPSERV (H450 events)
This adds new events to be handled according to the
underlying protocol.

getVersion char *getVersion() Return the GKXAPI version.

Attributes Type Description

none

204 – S5000 Reference manual – 2.0-ed1

7.3.5. Class GKMSG

This class is related to a M2M-S5000 event and stores a set of attributes related to the event.
Event can be: (at time of writing)

 Default event package : (SIP and H323)
 RRQ, URQ, ARQ, SETUP, ALERTING, CONNECT, DISC and TIMEOUT.
 INFO, INFOOK, RCF, RRJ, RTIMEOUT
 EPLIST

 H245 event package:
 OLC, OLCACK

 RSVP event package:
 RSVP_PATH, RSVP_RESV, RSVP_RESVCONF, RSVP_PATHTEAR

 MediaEntities event package
 ME_MESPLITTED, ME_MECREATED, ME_MECREATERR

 Supplementary services event package (call transfer, etc)
o SUPSERV (for H450 events)

Signaling events

SIP message H323 message H245 message RSVP msg GKX event MSG_

REGISTER RRQ RRQ

INVITE SETUP SETUP

BYE, CANCEL ReleaseComplete DISC

ACK (contextual) CONNECT CONNECT

Ringing ALERTING ALERTING

 OpenLogicalChannel OLC

 OpenLogicalChannelAck OLCACK

 Path RSVP_PATH

 Resv RSVP_RESV

 ResvConf RSVP_RESVCONF

 PathTear RSVP_PATHTEAR

 ResvErr RSVP_RESVERR

 PathErr RSVP_PATHERR

INFO INFO

OK on INFO INFOOK

OK on
REGISTER

 RCF

Ko on
REGISTER

 RRJ

Timeout on
register

 RTIMEOUT

REGISTER with
0 TTL

URQ URQ

Endpoint
unreachable

Endpoint
unreachable

 URQ

 H450 SUPSERV

 LOSTCNX (lost
S5000 link)

205 – S5000 Reference manual – 2.0-ed1

Response events
Response events are sent in response to commands.

 Media Entity objects accept commands and the table below shows the awaited events;
 Generic commands expects events in return, as getEPList(). Details follow.

Media Entity command GKX event Comment

Creation success
Creation error

ME_MECREATED
ME_MECREATERR

Split success
Split error

ME_MESPLITTED
ME_MESPLITERR

General Command GKX event MSG_ Comment

Endpoint list request
getEPList()

EPLIST
-infoData field contains
 the endpoint list in an
<xml> like view

-aliasList field contains
the list of all SIP and
H323 endpoint aliases,
each-one separated by
a coma

The endpoint list is given as a data string that
contains the database description as below, in
pseudo BNF:

EPList: entrylist END

entrylist: entry SEP entrylist | entry

entry: <class=classval ; type=typeval ;

alias=aliasval ;

contactAliases=contactAliasesVal;ttl=tt

lval;info=infoval >

classval: H323 | SIP

typeval: integer (reserved)

contactAliasesVal: String,String,…

aliasval: string

ttlval: integer

infoval: string

SEP: \n
END: \n\n

End points list EPLIST infoData field format (char *)

Entry
Attribute

class (String) type (integer) aliases
(String)

ttl (integer) info (String)

Description H323 or SIP For future use Endpoint
known aliases,
E164, H323-
ID, URI; coma
separated
values

Time to live as
known (may
change)

Product and
vendor
information as
extracted from
the endpoint
messages

Example :

<class=H323;type=1;aliases=60005,SIEMNS;ttl=15;info=”Hinet LP5100”>\n

<class=SIP;type=0;alias=5100@192.168.0.30:5060,Office;contactAliases=5101;5

102;ttl=2;info=”Swissvoice IP10S”>\n

\n

206 – S5000 Reference manual – 2.0-ed1

Attributes Type Description

type enum _msgType Message type (see below)

transaction Char[10] Transaction ID

callId Char[40] Call ID

sessionId char[10] Session ID

ip_source char[30] IP source address

e164_source char[128] E164 source address

h323_source char[128] H323 source address

ip_destination char[30] IP destination address

e164_ destination char[128] E164 destination address

h323_ destination char[128] H323 destination address

techPrefix char[128] List of gateways’TechPrefix

bandwidth char[30] Bandwidth

outOfResource Bool E1 gateway out of resource flag

gateway Bool EndPoint is gateway flag

display char[128] Display field

data char[128] Data field for GK to client communication

privateData char[128] Data field within Setup/Invite messages

Method Signature Description

None This object is passed in 1st
parameter in callback function. No
constructor is needed.

_msgType Reply required / Notification only

MSG_RRQ Reply required

MSG_URQ Notification only

MSG_ARQ Reply required

MSG_aRQ Reply required

MSG_DRQ Notification only

MSG_LRQ (*) Reply required

MSG_LCF (*) Notification only

MSG_RAI (*) Notification only

MSG_SETUP Reply required

MSG_CONNECT Notification only

MSG_BUSY Notification only

MSG_DISC Notification only

MSG_DATA Notification only

MSG_EPLIST Notification only

MSG_UNKNOWN Notification only

207 – S5000 Reference manual – 2.0-ed1

Messages to fields mapping
 RRQ URQ ARQ aRQ DRQ RAI(*) SETUP CONNECT DISC DATA

type X X X X X X X X X X

transaction X X X X X X

callId X X X X X X

sessionId X X X

ip_source X X X X X X

e164_source X X X X X

h323_source X X X X X

ip_destination X X X

e164_
destination

 X X X

h323_
destination

 X X X

techPrefix X

bandwidth X X

outOfResource X

gateway X

display X X

data X

privateData X

208 – S5000 Reference manual – 2.0-ed1

7.3.6. Class CTX

The CTX object can be used to act on any call handled within the application:

 release a call, place a call, join a call, …

Attributes Type Description

none

Method Signature Description

releaseCall void releaseCall(char *callID) Disconnect call or half call.

sendURQ void sendURQ(char *ip) Send URQ command from GK to
ip address of endpoint.

getCallId char *getCallId() Allocate a callIdentifier string.
This string is to use for
subsequent startCall().
Freeing of the returned string is to
perform by user.

startCall int startCall(char *callId, char
*e164Called, char *destIpAddr, char
*e164Calling, char *display)

Uses a MediaEntioty to dial out
an outgoing call
to e164Called or destIpAddress
(GW case).
E164Calling is a valid and
unconnected
mediaEntity within the S5K
gatekeeper.
Return 0=success, -1=failed.

joinCall int joinCall(char *media1, char *media2) Join 2 halves communications.
Media1 and Media2 are two
connected mediaEntities.
This can be the next step of trwo
startCall().
Join halves coms stops any play
file that was playing and connects
the media channels in both ½
calls.
Return 0=success, -1=failed.

209 – S5000 Reference manual – 2.0-ed1

7.3.7. Class RRQ_REPLY

This class is used to build a RRQ answer that M2M-S5000 will use for its actions.
A RRQ_REPLY object can only be built while in a RRQ event processing.
The application can choose to reject the endpoint registration request at that point with a reject() or to
continue the registration with an accept().
When the decision is to continue the registration, one can set/modify the endpoint elements with
changeE164() method for example to force a set of dynamic aliases.
NOTE: A RRQ event is thrown for H323-RRQ or SIP-REGISTER messages.

Method Signature Description

RRQ_REPLY RRQ_REPLY (GKMSG *gkMsg, CTX *ctx) Constructor for response to initial
ARQ event.
(gkMsg and ctx passed within
callback).

changeE164 void changeE164(char *newE164) Change the fist E164 alias found
with this one. The endpoint will
act as if this dynamic alias had
been set in first place.

changeH323 void changeH323Id(char *newH323Id) Change the fist H323Id alias
found with this one. The endpoint
will act as if this dynamic alias
had been set in first place.

accept void accept() Send the response to S5000 and
accept the request.

reject void reject() Send the response to S5000 and
reject the request.

Attributes Type Description

none

210 – S5000 Reference manual – 2.0-ed1

7.3.8. Class ARQ_REPLY

This class is used to build an INITIAL ARQ answer that M2M-S5000 will use for its actions.
An ARQ_REPLY object can only be built while in a ARQ event processing.

Method Signature Description

ARQ_REPLY ARQ_REPLY (GKMSG *gkMsg, CTX *ctx) Constructor for response
to initial ARQ event.
(gkMsg and ctx passed
within callback).

changeIpSource void changeIpSource(char *newIP) Change ip source in reply

changeE164Source void changeE164Source(char *newE164) Change e164 source in
reply.

changeH323Source void changeH323Source(char *newH323) Change h323Id source in
reply.

changeIpDestination void changeIpDestination(char *newIP) Change ip destination in
reply.

changeE164Destination void changeE164Destination(char *newE164) Change e164 destination
in reply.

changeH323Destination void changeH323Destination(char *newH323) Change h323 destination
in reply.

changeBandwidth changeBandwidth(char *newBW) Change bandwidth in
reply with string format.

accept accept() Send the response to
S5000 and accept the
request.

reject reject() Send the response to
S5000 and reject the
request.

Attributes Type Description

none

211 – S5000 Reference manual – 2.0-ed1

7.3.9. Class aRQ_REPLY

This class is used to build an FINAL ARQ answer that M2M-S5000 will use for its actions.
An aRQ_REPLY object can only be built while in a aRQ event processing.

Method Signature Description

aRQ_REPLY ARQ_REPLY (GKMSG *gkMsg, CTX *ctx) Constructor for response
to final ARQ event.
(gkMsg and ctx passed
within callback).

changeIpSource void changeIpSource(char *newIP) Change ip source in reply

changeE164Source void changeE164Source(char *newE164) Change e164 source in
reply.

changeH323Source void changeH323Source(char *newH323) Change h323Id source in
reply.

changeIpDestination void changeIpDestination(char *newIP) Change ip destination in
reply.

changeE164Destination void changeE164Destination(char *newE164) Change e164 destination
in reply.

changeH323Destination void changeH323Destination(char *newH323) Change h323 destination
in reply.

changeBandwidth changeBandwidth(char *newBW) Change bandwidth in
reply with string format.

accept accept() Send the response to
S5000 and accept the
request.

reject reject() Send the response to
S5000 and reject the
request.

Attributes Type Description

none

212 – S5000 Reference manual – 2.0-ed1

7.3.10. Class SETUP_REPLY

This class is used to build a SETUP answer that M2M-S5000 will use for its actions.
A SETUP_REPLY object can only be built while in a SETUP event processing.
The SETUP_REPLY object contains all the information for the resulting (and hence modified) SETUP
message M2M-S5000 might forward to the other party.
A SETUP_REPLY object contains all the initial SETUP message values and the developer can modify
some of these via object methods. For example, one can modify the display element with
changeDisplay() method.

NOTE: a SETUP event is thrown for H323-SETUP or SIP-INVITE messages.

Method Signature Description

SETUP_REPLY SETUP_REPLY (GKMSG *gkMsg, CTX *ctx) Constructor for response
to SETUP event.
(gkMsg and ctx passed
within callback).

changeE164Source void changeE164Source(char *newE164) Change e164 source in
reply.

changeIpDestination void changeIpDestination(char *newIP) Change ip destination in
reply.

changeE164Destination void changeE164Destination(char *newE164) Change e164 destination
in reply.

changeDisplay void changeDisplay(char *newDisplay) Change display in reply.

setPrivateData setPrivateData(char *data) Insert private data string
(max 80) in Setup/Invite
message.

setNoAutoconnect setNoAutoconnect() Transform a normal call
into a ½ call.
Redirect the incoming call
to a mediaEntity and
use this functions to avoid
connecting
automatically the call to
the playFile.
SetNoAutoconnect() let
the call rings.

accept accept() Send the response to
S5000 and accept the
request.

reject reject() Send the response to
S5000 and reject the
request.

Attributes Type Description

none

213 – S5000 Reference manual – 2.0-ed1

7.3.11. Class CONNECT_REPLY

This class is used to build a CONNECT answer that M2M-S5000 will use for its actions.
A CONNECT_REPLY object can only be built while in a CONNECT event processing.
The application can choose to stop the call at that point with a reject() - a ReleaseComplete H323 will
be generated in the H323 call legs- or to continue the call with an accept().
When the decision is to continue the call, one can set/modify the display element with changeDisplay()
method in order to display useful information to the caller.

Method Signature Description

CONNECT_REPLY CONNECT_REPLY (GKMSG *gkMsg, CTX
*ctx)

Constructor for response
to SETUP event.
(gkMsg and ctx passed
within callback).

changeDisplay void changeDisplay(char *newDisplay) Change display in reply.

setJoinCallId setJoinCallId(char *callId) Connects two halves
communications. The
waiting call callId (peer
call) is given to the
function and as the
current call connects, it
automatically will have its
media channels
connected to the peer
call.

accept accept() Send the response to
S5000 and accept the
request.

reject reject() Send the response to
S5000 and reject the
request.

Attributes Type Description

none

214 – S5000 Reference manual – 2.0-ed1

8. Administration via TCP Socket API

8.1. Endpoints

S5000 has capabilities to manage provisioning of different IP-Phones.This process uses API socket
(default port: 16000) for operate provisioning of phones like Thomson (ST2030, TB30), Panasonic

(TGP550, UT136) and Aastra (6757i and 6731i).

Three operations are available; Creation/Edition, Suppression and Consultation of different profiles.

With PROVEP, command we can create new profile, but it’s possible to suppress, consult or modify
existing profile too. TCP protocol transport is used to ensure security in transactions

PROVEP s :1 e:510001 t:Aastra-6731i m:001124420AC74 D:Thom_5122 n:2 z:-1

u:-1 H:1 f:None ft:10 fm:0 $:1 gr:m2m li:5122 p:5122 v:0 vo:0 vd:100 P:20

FONCT:3;BLF;5110

This command creates new profile of 510001 with type Aastra-6731i.

 Attributes

To create new endpoint profile with auto provisioning, it’s essential to fill operation (s :) and alias (e :).
Any PROVEP command successes without these parameters. They permit to create configuration files
to move on the phone by s5000.

Different attributes are represented in PROVEP command:

Attribute Definition

s: Represente the type of operation to affect to the command, 0:Suppression

1 :Création/Modification 2 : Consultation

e: Represente the alias of the IP-phone

t: Represente the type of ip-phone. It takes value in {Thomson-ST2030, Thomson-

TB30, Panasonic-TGP550, Panasonic-UT136, aastra-6731i, Aastra-6757i, none}.

m: Is the mac Address

n: Is the number of lines, for the Aastra this field is unused

z: Represente the Time Zone. Look at Time Zone table for supported value.

u: This field represente selected language of phone, default langage is selected while

not filled.

c: county tone , depending of the kind of phone different tables are present

H: DHCP, 0=false 1=true

@: static IP

S: The mask

G: Gateway

f: Forward, it’s value in {None, Always, Busy}

215 – S5000 Reference manual – 2.0-ed1

fn: Forward number

ft: Forward timer by default value is 10,

fm: Forward message this field can take value in {0,1}

$: Ethernet connexion 0 : Auto, 1 : 100/Half , 2 : 100/Full 3 : 10/Half, 4 :10/Full

gr: Represente the group of the phone

R: Represente the restriction list

li: The login of sipAccount

p: The password of sipAccount

v: Represente vlan field 0=false 1=true

vl: Vlan Voice, allowed only if vlan enabled (v :1)

vd: Vlan data, depends on vlan field

P: Represente the Ptime in case of G729 codec

B: Represente supervised line 0=false et 1=true

C: Represente list of shared lines. Elements of list are separed by coma “,”

O: Represente “Call Waiting Tone disabled” field 0=false et 1=true

E: Represente “Distinguished melody for external calls” field values ares 0=false et 1

= true by default value is 0

y: Represente « Préfix Sip Appelant pour Transfert » field.

I: Represente web password.

r: Represente chosen melody. Taken value are represented in table of Melody

FONCT: Represent list of functionals touches.

Different fonctionals touches are separed by “>”

Touches are represented by Value, Function, Number and in case of Aasra-

6757i, Label. The label is the name of the touch represented in the sceen.

All fields of touch are separed by semicolon “;”

 Value: represente le position of the touch
 Function: values of this field are:

 BLF
 SPEEDDIAL
 DTMF (not for Aastra).

 Number: represente an endpoint number
 Label: only for Aastra_6757i

Ex: FONCT: 4;5170;DG>5;5425;DT

216 – S5000 Reference manual – 2.0-ed1

 Endpoint Profile without Auto-provisioning (PROVEP s: 1)

There are fields whose presence is essential in the application to create a profile with auto-

provisioning.

Indeed you can’t provision a phone which you don’t know the type (None). In this case you create a

profile of the phone without auto-provisioning.

Request:
PROVEP s:1 e:555 t:None m:001124420AC741 D:555 n:2 z:-1 u:-1 H:1 f:None

ft:10 fm:0 $:1 gr:m2m li:5122 p:5122 v:0 vo:0 vd:100 P:40

Response:
PROVEP T: 1

#:<class=PROV;name=555;operation=Creation;result=Succes;comment=No_PROVISIO

NING>

<Comment=No_PROVISIONING>: is precision on the provisioning operation, although the profile

creation was success <result=Success>, but <comment=No_PROVISIONING> indicate that

phone type chosen don’t allow auto-provisioning “t: None”.

In web interface we see 555 profile without auto-provisioning.

We obtain same result with the request
PROVEP s:1 e:555 t:None D:555 n:2 z:-1 u:-1 H:1 f:None ft:10 fm:0 $:1

gr:m2m li:5122 p:5122 v:0 vo:0 vd:100 P:40

Here t: None is chosen to for creating profile without auto-provisioning. That’s why any macAddress
was defined.

217 – S5000 Reference manual – 2.0-ed1

 Comments

Responses of several requests contain comment which permit to precise the reason of failure of auto-
provisioning.
In case of success any comment is provided.
These comments are:

 NO_MACADDRESS : indicate that macAddress is missed
 NO_PROVISIONING : provisioning is not pssible with current request
 NO_PHONETYPE : specify valable type of phone for auto-provisioning
 NO_IPADDRESS : this comment indicate that your DHCP is disabled but no IP

address is specified
 NO_ALIAS : reqtest is unvailable , specify alias et retry
 BAD_SYNTAXE : verify sysntaxe and retry

 Endpoint Profile with Auto-provisioning (PROVEP s: 1)

To create profile with auto-provisioning, we must inform phoneType with other value than”None”, and
mac Adress of the phone.

PROVEP s:1 e:5115 t:Aastra-5767i m:00085D2F6006 D:5115 n:2 z:-1 u:-1 H:1

f:None ft:10 fm:0 $:1 gr:m2m li:5122 p:5122 v:0 vo:0 vd:100 P:40

PROVEP T:1 #:<class=PROV;alias=5115;operation=Creation;result=Success>

Success of creation, new profile with provisioning is materialized by alias, macAddress and type in
web interface.

To control all parameters entered click in macAdress of the phone in web interface

218 – S5000 Reference manual – 2.0-ed1

 Functionals Touches (FONCT :)

The management of functional keys depends of the type of phone to manipulate.
 Thomson’s

In Thomson phones as ST2030 or TB30, number of functional keys depends on line number. When
line number is ten (n:10), any functional key can be specified.

219 – S5000 Reference manual – 2.0-ed1

In Thomson’s phone if n : k with k<10 then FONCT : i ;SERVICE ; NUM exists only if i element
of interval [k+1,10], and SERVICE in {BLF, SPEEDDIAL, DTMF}

Ex: PROVEP s:1 e:444 t:Thomson-ST2030 m:0014758A1487 n:2 FONCT:3;BLF;5112

220 – S5000 Reference manual – 2.0-ed1

 Aastra-6731i

Aastra 6731i contains 8 functional keys the both first are used to specify (Directory, Messaging), at the
3th position it’s possible to put the first programmable touch.

 Aastra-6757i
For Aastra 6757i, there have 6 functional touches named softkeys.
The softkeys have label field. Label is screened on the phone interface.
It’s possible to customize label
Ex PROVEP s:1 e:0624556677 t:Aastra-6757i m:003324420AC74

D:Aastra_Commercial n:2 z:-1 u:-1 H:1 f:None ft:10 fm:0 $:1 gr:m2m li:5122

p:5122 v:0 vo:0 vd:100 P:20

FONCT:1;BLF;0492445878;CP>2;BLF;06754785415;DT>3;SPEEDDIAL;0561445120;DM

 Modification (PROVEP s: 1)

With the command PROVEP, edit a profile is to delete and recreate it with new values. The removing
step is transparent to the user.

 Consultation (PROVEP s: 2)

To ensure the creation of a profile with or without provisioning, you can make a consultation. The
command "PROVEP s: 2" to query the table Endpoints profiles in consultation
PROVEP takes as input the transaction (s 2) and the alias of the Endpoint (e 555), and returns all the
information about it.
To view information on all Endpoints table, we put "*" (PROVEP s: 2 e:*)

Request
PROVEP s:2 e:*

Response
PROVEP T:1 #:<class=PROV;alias=59889;mac=001124420AC74;phoneType=Aastra-

6731i;display=tompouce;restric=;sharedLines=;webPass=;PrefixTrans=;melody=0

221 – S5000 Reference manual – 2.0-ed1

;Dhcp=1;ip=;mask=;gateway=;login=5122;password=5122;ethCX=1;nbLines=2;cTone

s=;timeZone=15;langue=6;cWToneDisabled=0;supervisedCall=0;dustinguishMforEx

ternal=0;forwardType=None;forwardNum=;forwardMsg=0;group=m2m;F1=BLF+5110;F2

=;F3=;F4=;F5=;F6=;F7=;F8=>

<class=PROV;alias=5989;mac=001124420AC73;phoneType=Aastra-

6731i;display=tompouce;restric=;sharedLines=;webPass=;PrefixTrans=;melody=0

;Dhcp=1;ip=;mask=;gateway=;login=5122;password=5122;ethCX=1;nbLines=5;cTone

s=;timeZone=7;langue=1;cWToneDisabled=0;supervisedCall=0;dustinguishMforExt

ernal=0;forwardType=None;forwardNum=;forwardMsg=0;group=m2m;F1=BLF+5110;F2=

SPEEDDIAL+5214;F3=;F4=;F5=;F6=;F7=;F8=>

<class=PROV;alias=444;mac=;phoneType=None;display=;restric=;sharedLines=;we

bPass=;PrefixTrans=;melody=0;Dhcp=1;ip=;mask=;gateway=;login=;password=;eth

CX=1;nbLines=1;cTones=;timeZone=-1;langue=-

1;cWToneDisabled=0;supervisedCall=0;dustinguishMforExternal=0;forwardType=;

forwardNum=;forwardMsg=0;group=>

<class=PROV;alias=8900;mac=4545140021;phoneType=Aastra-

6757i;display=;restric=;sharedLines=;webPass=;PrefixTrans=;melody=0;Dhcp=1;

ip=;mask=;gateway=;login=;password=;ethCX=1;nbLines=1;cTones=;timeZone=-

1;langue=-

1;cWToneDisabled=0;supervisedCall=0;dustinguishMforExternal=0;forwardType=;

forwardNum=;forwardMsg=0;group=;F1=;F2=;F3=;F4=;F5=;F6=>

<class=PROV;alias=510004;mac=;phoneType=null;display=;restric=;sharedLines=

;webPass=;PrefixTrans=;melody=0;Dhcp=1;ip=;mask=;gateway=;login=;password=;

ethCX=1;nbLines=2;cTones=;timeZone=-1;langue=-

1;cWToneDisabled=0;supervisedCall=0;dustinguishMforExternal=0;forwardType=N

one;forwardNum=;forwardMsg=0;group=>

PROVEP s:2 e:510002

PROVEP T:2

#:<class=PROV;alias=510002;mac=003324420AC74;phoneType=Aastra-

6757i;display=Thom_5122;restric=;Dhcp=1;ip=;mask=;gateway=;login=5122;passw

ord=5122;ethCX=1;nbLines=2;cTones=;timeZone=-1;langue=-

1;forwardType=None;forwardNum=;forwardMsg=0;group=m2m;F1=BLF+5110+CTO;F2=BL

F+5115+PM;F3=SPEEDDIAL+5120+PDG;F4=;F5=;F6=>

<class=PROV;alias=555;mac=null;phoneType=None;display=;restric=;Dhcp=1;ip=;

mask=;gateway=;login=;password=;ethCX=1;nbLines=2;cTones=;timeZone=-

1;langue=-1;forwardType=None;forwardNum=;forwardMsg=0;group=>

<class=PROV;alias=555;mac=null;phoneType=None;display=;restric=;Dhcp=1;ip=;

mask=;gateway=;login=;password=;ethCX=1;nbLines=2;cTones=;timeZone=-

1;langue= 1;forwardType=None;forwardNum=;forwardMsg=0;group=>

It may be noted that in the case of the function keys, different fields are separated by plus "+".

 Suppression (PROVEP s: 0)

As for the creation and consultation, PROVEP can also remove an existing profile.

PROVEP s:0 e:alias delete alias from list of profiles.

Request
PROVEP s:0 e:5100

Response
#:<class=PROV;alias=5100;operation=Suppression;result=Success

222 – S5000 Reference manual – 2.0-ed1

8.2. Routing

S5000 is enriched to the capabilities of managing embedded services, routes and trunks. TCP socket
is used to ensure security in transactions.

8.2.1. RoutinG Embedded Service ReQuest (RGESRQ)
RGESRQ T:1 s:1 NAME:NomEmbed y:Type E:maskSrce H:maskDest e: srcForward

h:destForward c:listCodecs R:Route tarn:AppliName z:sipAccount t:target

f:mediaFile

Creation/Destruction/Edition of Embedded Service.
Message Type: RGESRQ
Attribute: each attribute is optional and can be placed anywhere in the query. Unset a field is
substituted by zero.

It is possible to have embedded Service without Route (Multi-domain case ...), in which case the R:
flag is not set.
When route field (R:) is set, it is essential to provide Route already defined in the routes table.
Index of the service in list of embedded services.

Attributes Definitions

T: TransactionID, present in all messages for the synchronization of Request /

Response

s: operation on embedded service : 1:Creation 2: Consultation

0: Suppression

NAME: name of the service

y: Represent the type of service (FORWARD, EARLYCONNECT…)

E: source mask

H: destination mask

e: source forwarded

h destination forwarded

c list of codec managed by endpoint using service, Different codecs are separed

by coma ”,” (Ex: c:G711A,G729

R: route of the service

tarn: name of the application connected on the service

z: mask of sipAccount

t: destination address

f: media file to used depending of the type of service

p: Index of the service in list of embedded services.

Sample

223 – S5000 Reference manual – 2.0-ed1

3. Création of embed sevice

RGESRQ T:4 NAME:TEST s:1 y: FORWARD c:G711A,G729 R:Route_OUT H:458*

h:+5+* t:192.168.10.10 f:bip.sw p:5

 Résult: Success if ROUTE_OUT is existing route.
RGES T:1

#:<class=EmbeddedService;name=TEST;operation=Creation;result=Success>

 Résult: Error if ROUTE_OUT doesn’t exit yet.
RGES T:1

#:<class=EmbeddedService;name=TEST;operation=Creation;result=Error>

In the case of a successful web interface shows the table of embedded services has been enriched by
a new service

4. Consultation

To ensure the creation of my service, I can make a consultation.

RGESRQ T:5 NAME:TEST s:2

The result of this query is in ASCII code and decoding gives the following representation
RGES T:2
#:<class=EmbeddedService;name=TEST;sourceMask=5201;destMask=458*;destAddr=1

92.168.10.10;destFwd=+5+*;SrcFwd=*;Route=Route_OUT;Type=FORWARD;Application

=;SipAccount=*;CodecsList=G711A,G729;Media_file=bip.sw>

Dans le cas où le service n’existe pas une telle requête aurait comme résultat error.
RGES

T:13#:<class=EmbeddedService;name=TEST;operation=Consultation;result=Error>

5. Destruction

To destroy service (s : 0) just fill it’s name

RGESRQ T:1 NAME:TEST s:0

224 – S5000 Reference manual – 2.0-ed1

8.2.2. RoutinG RouTe ReQuest (RGRTRQ)

This command creates route.
RGRTRQ T:tid s:operation NAME:nom_Route m:mode(0 || 1)

G:code_Error_to_continue tn: trunk_List

Creation/Edition/Destruction of route
MessageType: RGRTRQ
Attribute: each attribute is optional and can be placed anywhere in the query. Unset a field is
substituted by zero.

Attributes Definitions

T: TransactionID, present in all messages for the synchronization of Request /

Response.

s : Operation on route : 1:Creation 2: Consultation 0: Suppression

NAME: Route name

m: Ttaken value are Backup or Loadbalanced m: 0 => Backup m: 1 => Loadbalanced

G: Represente list of error code. Different codes are separed by coma “,” (Ex:

G:405,302,607,845…)

tn: Contains all trunks, trunk list are separated by coma « , » (Ex: tn: trunk1, trunk2…)

Sample:

1. Route creation

RGRTRQ T:1 NAME:Route_TEST s:1 m:0 G:408,510,750

tn:Trunk_MR,Trunk_FR

Result: List of routes is enriched of new route.

225 – S5000 Reference manual – 2.0-ed1

2. Consultation

To ensure the creation of my service, I can make a consultation. RGRTRQ s: 2 show

RGRTRQ, but in edition (s: 2) mode this time .

RGRTRQ T:5 NAME:Route_TEST s:2

The request’ result is coded in Ascii which the decoding gives this following representation.

RGRT T:119

#:<class=Route;name=Route_TEST;mode=Backup;CodesError=408,510,750;TrunksLis

t=Trunk_MR,Trunk_FR>

3. Destruction

To delete a route (s: 0) just fill its name.
RGRTRQ T:1 NAME:Route_TEST s:0

If Route_TEST in any embed service result is success, else Error
<class=Route;name=Route_TEST;operation=Suppression;result=Success>

8.2.3. RoutinG TRunk ReQuest (RGTRRQ)

RGTRRQ T:1 s:operation NAME:Trunk_name c:listCodecs G: No_answer_Timer

H:NewDest tarn:listOfTargets op:algorithm tn: Max_of_call_accepted

Creation/Edition/Destruction of trunk
Message Type: RGTRRQ
Attribute: each attribute is optional and can be placed anywhere in the query. Unset a field is
substituted by zero.

attributes definitions

T: TransactionID, present in all messages for the synchronization of Request /

Response

s : Operation on route : 1:Creation 2: Consultation 0: Suppression

NAME: Trunk name

c: List of codec managed by endpoint using trunk, Different codecs are separed by

coma ”,”

(Ex: c:G711A,G729)

G: No answer timer

H New destination field

op: Represent the algorithmic field, Taken value are: FromFirst or MultiRinging

tn: Number of call the trunk manage.

tarn: Represent list of targets of the trunk, This field is essential. lf trunk contains several

targets

226 – S5000 Reference manual – 2.0-ed1

Sample
1. Creation

RGTRRQ T:1 s:1 NAME:Trunk_TEST c:G711U,G729 G:15 H:5148 tarn:@5144,@5147

op:FromFirst tn:1750

RGTR T: 55 #:<class=Trunk;name=Trunk_TEST;operation=Creation;

result=Success>

Trunk without target

RGTRRQ T:1 s:1 NAME:Trunk_TEST_FAUX c:G711U,G729 G:15 H:5148 op:FromFirst

tn:1750

RGTR T:17 #:<class=Trunk;name=Trunk_TEST_FAUX;operation=Creation;

result=Error>

2. Consultation

RGTRRQ T:1 NAME:Trunk_TEST s:2

RGTR T:62

#:<class=Trunk;name=Trunk_TEST;MaxCalls=1750;Algorithme=From_first;NewDest=

5148;NoAnswerTimer=15;Targets=@5144,@5147;codecsFilters=G711U,G729>

3. Suppression

RGTRRQ T:1 NAME:Trunk_TEST s:0

RGTR T:66

#:<class=Trunk;name=Trunk_TEST;operation=Suppression;Result=Success>

227 – S5000 Reference manual – 2.0-ed1

9. Appendix

9.1. Installation of Matrix Dongles with Linux udev system

With a dongle licensing, you received a Matrix USB dongle. Before 2.6 Linux kernels, the dongle is
automatically recognized after the automated installation through the “hotplug” system.
This is not the case with 2.6 and above kernels that rely on udev system.

Some manual operations must be conducted:

6. Install the matrix library

This is usually already done by the graphic automatic installer.
It consists of copying libmxlin.so.2.6.0 within /usr/local/lib directory and setting two symbolic
links.

#cp <product>/matrx/libmxlin.so.2.6.0 /usr/local/lib
#ln -s /usr/local/lib/libmxlin.so.2.6.0 /usr/local/lib/libmxlin.so.2.6
#ln -s /usr/local/lib/libmxlin.so.2.6 /usr/local/lib/libmatrix32.so

7. Create the « usb » group

One must check the « usb » group exists or create it.
#groups

This displays the list of existing UNIX groups on the system
#m2msoft dialout cdrom audio video plugdev

If the group does not exist, create it as follow:
#groupadd usb

 The current user must be added to the group by editing the /etc/group file.
#vi /etc/group
here the group is appended at the end of the file with a user name

usb:x:1001:m2msoft

(:wq to save the file)

8. Udev configuration

The access rights configuration for usb and matrix dongle is done through the
/etc/udev/udev.rules file with addition of GROUP field.
#vi /etc/udev/udev.rules
find the line with the word: usb_device
and embeds in it the pattern GROUP="usb" as follow:
SUBSYSTEM=="usb_device", PROGRAM="/bin/sh -c 'K=%k; K=$${K#usbdev};

printf
bus/usb/%%03i/%%03i $${K%%%%.*} $${K#*.}'", ACTION=="add", GROUP="usb", \
NAME="%c"

9. Restart the host

Contact our staff at support@m2msoft.com for up to

date information and any assistance on UDEV

configuration.

mailto:support@m2msoft.com

	1. Content
	2. Introduction
	3. M2M-S5000 Concept
	3.1. The GIMS framework
	3.2. S5000 features
	3.3. S5000 layers

	4. Installation
	4.1. Prerequisites for S5000 execution
	4.1.1. Hardware requirements
	4.1.2. Operating System requirements
	4.1.3. Additional software components requirements

	4.2. The S5000 delivery package
	4.3. Installation
	4.3.1. Start from CDROM installer
	4.3.2. Start from file installer
	4.3.3. Graphical installation
	4.3.4. Manual installation

	4.4. License settings
	4.4.1. License general parameters
	4.4.2. Dongle settings
	4.4.3. License file
	4.4.4. License given from license server

	4.5. Installation checking
	4.6. ControlCenter

	5. Configuration and Administration
	5.1. Login Page
	5.2. Home Page and persistent buttons
	5.3. General parameters page
	5.3.1. General
	5.3.2. SIP
	5.3.3. H.323
	H.323 Zones
	H.323 Proxies
	5.3.4. Bandwidth areas
	5.3.5. Groups
	5.3.6. DBase
	5.3.7. Security
	5.3.8. HTTP accounts

	5.4. Endpoints page
	5.4.1. Endpoints view
	5.4.2. Endpoints Profiles / Basic parameters
	5.4.3. Endpoints Profiles / Auto-provisioning
	5.4.4. User access to IP-Phone settings
	5.4.5. Static Entities
	5.4.6. SIP Accounts

	5.5. Calls page
	5.5.1. Active Calls
	5.5.2. Daily CDRs
	5.5.3. Archived CDRs

	5.6. Embedded Services page
	5.6.1. Services
	5.6.2. Routes
	5.6.3. Trunks
	5.6.4. Trunks statistics
	5.6.5. IP/Trunks mapping
	5.6.6. Restrictions
	5.6.7. SpeedDials

	5.7. Media page
	5.7.1. Media Entities
	5.7.2. Media Termination Points
	5.7.3. MTP Rules
	5.7.4. Recorder

	5.8. IPBX page
	5.8.1. IPBX DTMF commands and audio files
	5.8.2. DTMF/IPBX commands disabling rules
	5.8.3. Redirect rules
	5.8.4. Global Auto-provisioning
	5.8.5. Enterprise Directory administration

	5.9. Applications page
	5.10. Logs page
	5.11. About page
	5.11.1. Product
	5.11.2. Vendor
	5.11.3. Updates

	6. S5000 Advanced technologies and configuration guide
	6.1. SIP interface
	6.1.1. Registrar Server
	6.1.2. Proxy Server
	6.1.3. SIP/H323 Gateway

	6.2. Media Entities
	6.2.1. What for?
	6.2.2. Usage
	6.2.3. Limitations
	6.2.4. Use with application programming interface

	6.3. Media Termination Points (MTP)
	6.4. Automatic NAT handling
	6.5. Inter-site trough Internet (No VPN solution)
	6.5.1. Routing configuration
	6.5.2. Definition of global listener for external sites
	6.5.3. Router/Firewall settings

	6.6. Endpoints registration control
	6.6.1. Reject a set of endpoints
	6.6.2. Accept a set of endpoints

	6.7. Advanced Routing
	6.7.1. The simple way
	6.7.2. The advanced way
	6.7.3. Routing according to CODECs
	6.7.4. Routing according to DNS (SRV, NAPTR, ENUM)
	a) Principles
	b) Use

	6.8. Resilient solution
	6.8.1. Alternate Gatekeeper
	6.8.2. Automatic discovery
	6.8.3. S5000 Groups
	6.8.4. Automatic restart with jWatchdog

	6.9. RSVP service
	6.10. Secured calls with Transport Layer Security
	6.10.1. Certificate and private key needed
	6.10.2. Configure Security parameters
	a) Auto Generate your S5000 certificates files with openssl and HTTPS access

	6.11. T120 Proxification
	6.12. IPBX mode
	6.12.1. Virtual lines: 1 call, N lines

	6.13. Short Message Service

	7. Application Programming Interfaces
	7.1. S5000 API concepts
	7.1.1. Use cases: Control and Interfere call processing
	7.1.2. Use cases: Terminate calls with media (standard)
	7.1.3. Use cases: Terminate calls with specific media. Gateways design. (Advanced)
	7.1.4. Use cases: Transmit privateData in a call
	7.1.5. Multithread and sessions
	7.1.6. Use cases: Applications for VoIP monitoring only
	7.1.7. Advanced considerations
	7.1.8. SIP Proxy entities, Client, Server and INFO data transport
	7.1.9. What API subset for what usage?

	7.2. Java API (JGKXAPI)
	7.2.1. How does it work?
	7.2.2. My HELLO WORD
	7.2.3. Packages and Classes
	7.2.4. Class jgkx
	b) General functions
	c) Special SIP Proxy functions
	d) Special Generic Gateway Controler functions
	e) Administration functions

	7.2.5. Class GKMSG and events
	a) VoIP Signaling events (from Voip events)
	b) Response events (from application commands)
	c) GKMSG methods
	d) GKMSG attributes
	e) Attributes per event
	f) H323 Release reasons
	g) SIP Release reasons
	h) Examples of use

	7.2.6. Class CTX
	7.2.7. Class SETUP_REPLY
	7.2.8. Class ARQ_REPLY
	7.2.9. Class CONNECT_REPLY
	7.2.10. Class OLC_REPLY
	7.2.11. Class OLCACK_REPLY
	7.2.12. Class SUBSCRIBE_REPLY
	7.2.13. Class templateEmbedService
	7.2.14. Class templateRoute
	7.2.15. Class templateTrunk
	7.2.16. Class templateProvision
	7.2.17. ECMA-323 Package
	7.2.18. Mini Call Center Development

	7.3. C API (GKXAPI)
	7.3.1. How does it work?
	7.3.2. My HELLO WORD
	7.3.3. Classes
	7.3.4. Class GKX
	7.3.5. Class GKMSG
	7.3.6. Class CTX
	7.3.7. Class RRQ_REPLY
	7.3.8. Class ARQ_REPLY
	7.3.9. Class aRQ_REPLY
	7.3.10. Class SETUP_REPLY
	7.3.11. Class CONNECT_REPLY

	8. Administration via TCP Socket API
	8.1. Endpoints
	 Attributes
	 Endpoint Profile without Auto-provisioning (PROVEP s: 1)
	 Comments
	 Endpoint Profile with Auto-provisioning (PROVEP s: 1)
	 Functionals Touches (FONCT :)
	 Modification (PROVEP s: 1)
	 Consultation (PROVEP s: 2)
	 Suppression (PROVEP s: 0)

	8.2. Routing
	8.2.1. RoutinG Embedded Service ReQuest (RGESRQ)
	8.2.2. RoutinG RouTe ReQuest (RGRTRQ)
	8.2.3. RoutinG TRunk ReQuest (RGTRRQ)

	9. Appendix
	9.1. Installation of Matrix Dongles with Linux udev system

